Growing Self-Organizing Mini-Guts from a Single Intestinal Stem Cell: Mechanism and Applications

Science ◽  
2013 ◽  
Vol 340 (6137) ◽  
pp. 1190-1194 ◽  
Author(s):  
Toshiro Sato ◽  
Hans Clevers

Recent examples have highlighted how stem cells have the capability to initiate morphogenesis in vitro; that is, to generate complex structures in culture that closely parallel their in vivo counterparts. Lgr5, the receptor for the Wnt-agonistic R-spondins, marks stem cells in multiple adult organs of mice and humans. In R-spondin–based three-dimensional cultures, these Lgr5 stem cells can grow into ever-expanding epithelial organoids that retain their original organ identity. Single Lgr5 stem cells derived from the intestine can be cultured to build epithelial structures that retain hallmarks of the in vivo epithelium. Here, we review the mechanisms that support this notable example of self-organization and discuss applications of this technology for stem cell research, disease modeling (e.g., for colorectal cancer and cystic fibrosis), and regenerative medicine.

Author(s):  
Andre M. C. Meneses ◽  
Kerstin Schneeberger ◽  
Hedwig S. Kruitwagen ◽  
Louis C. Penning ◽  
Frank G. van Steenbeek ◽  
...  

Recent technical advances in the stem cell field have enabled the in vitro generation of complex structures resembling whole organs termed organoids. Most of these approaches employ culture systems that allow stem cell-derived or tissue progenitor cells to self-organize into three-dimensional (3D)-structures. Since organoids can be grown from various species, organs and from patient-derived induced pluripotent stem cells, they create significant prospects for modelling development and diseases, for toxicology and drug discovery studies, and in the field of regenerative medicine. Here, we report on intestinal stem cells, organoid culture, organoid disease modeling, transplantation, current and future uses of this exciting new insight model to veterinary medicine field.


2021 ◽  
Vol 22 (14) ◽  
pp. 7667
Author(s):  
Joseph Azar ◽  
Hisham F. Bahmad ◽  
Darine Daher ◽  
Maya M. Moubarak ◽  
Ola Hadadeh ◽  
...  

Organoids represent one of the most important advancements in the field of stem cells during the past decade. They are three-dimensional in vitro culturing models that originate from self-organizing stem cells and can mimic the in vivo structural and functional specificities of body organs. Organoids have been established from multiple adult tissues as well as pluripotent stem cells and have recently become a powerful tool for studying development and diseases in vitro, drug screening, and host–microbe interaction. The use of stem cells—that have self-renewal capacity to proliferate and differentiate into specialized cell types—for organoids culturing represents a major advancement in biomedical research. Indeed, this new technology has a great potential to be used in a multitude of fields, including cancer research, hereditary and infectious diseases. Nevertheless, organoid culturing is still rife with many challenges, not limited to being costly and time consuming, having variable rates of efficiency in generation and maintenance, genetic stability, and clinical applications. In this review, we aim to provide a synopsis of pluripotent stem cell-derived organoids and their use for disease modeling and other clinical applications.


2013 ◽  
Vol 45 (23) ◽  
pp. 1123-1135 ◽  
Author(s):  
David A. Brafman

Within the adult organism, stem cells reside in defined anatomical microenvironments called niches. These architecturally diverse microenvironments serve to balance stem cell self-renewal and differentiation. Proper regulation of this balance is instrumental to tissue repair and homeostasis, and any imbalance can potentially lead to diseases such as cancer. Within each of these microenvironments, a myriad of chemical and physical stimuli interact in a complex (synergistic or antagonistic) manner to tightly regulate stem cell fate. The in vitro replication of these in vivo microenvironments will be necessary for the application of stem cells for disease modeling, drug discovery, and regenerative medicine purposes. However, traditional reductionist approaches have only led to the generation of cell culture methods that poorly recapitulate the in vivo microenvironment. To that end, novel engineering and systems biology approaches have allowed for the investigation of the biological and mechanical stimuli that govern stem cell fate. In this review, the application of these technologies for the dissection of stem cell microenvironments will be analyzed. Moreover, the use of these engineering approaches to construct in vitro stem cell microenvironments that precisely control stem cell fate and function will be reviewed. Finally, the emerging trend of using high-throughput, combinatorial methods for the stepwise engineering of stem cell microenvironments will be explored.


2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Teresa P. Silva ◽  
João P. Cotovio ◽  
Evguenia Bekman ◽  
Maria Carmo-Fonseca ◽  
Joaquim M. S. Cabral ◽  
...  

Human morphogenesis is a complex process involving distinct microenvironmental and physical signals that are manipulated in space and time to give rise to complex tissues and organs. Advances in pluripotent stem cell (PSC) technology have promoted the in vitro recreation of processes involved in human morphogenesis. The development of organoids from human PSCs represents one reliable source for modeling a large spectrum of human disorders, as well as a promising approach for drug screening and toxicological tests. Based on the “self-organization” capacity of stem cells, different PSC-derived organoids have been created; however, considerable differences between in vitro-generated PSC-derived organoids and their in vivo counterparts have been reported. Advances in the bioengineering field have allowed the manipulation of different components, including cellular and noncellular factors, to better mimic the in vivo microenvironment. In this review, we focus on different examples of bioengineering approaches used to promote the self-organization of stem cells, including assembly, patterning, and morphogenesis in vitro, contributing to tissue-like structure formation.


2021 ◽  
Vol 11 (7) ◽  
pp. 3000
Author(s):  
Bruna Lopes ◽  
Patrícia Sousa ◽  
Rui Alvites ◽  
Mariana Branquinho ◽  
Ana Sousa ◽  
...  

In the past decades, regenerative medicine applied on skin lesions has been a field of constant improvement for both human and veterinary medicine. The process of healing cutaneous wound injuries implicates a well-organized cascade of molecular and biological processes. However, sometimes the normal process fails and can result in a chronic lesion. In addition, wounds are considered an increasing clinical impairment, due to the progressive ageing of the population, as well as the prevalence of concomitant diseases, such as diabetes and obesity, that represent risk-aggravating factors for the development of chronic skin lesions. Stem cells’ regenerative potential has been recognized worldwide, including towards skin lesion repair, Tissue engineering techniques have long been successfully associated with stem cell therapies, namely the application of three-dimensional (3D) bioprinted scaffolds. With this review, we intend to explore several stem cell sources with promising aptitude towards skin regeneration, as well as different techniques used to deliver those cells and provide a supporting extracellular matrix environment, with effective outcomes. Furthermore, different studies are discussed, both in vitro and in vivo, in terms of their relevance in the skin regeneration field.


2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Manuel Pedro Jimenez-García ◽  
Antonio Lucena-Cacace ◽  
Daniel Otero-Albiol ◽  
Amancio Carnero

AbstractThe EMX (Empty Spiracles Homeobox) genes EMX1 and EMX2 are two homeodomain gene members of the EMX family of transcription factors involved in the regulation of various biological processes, such as cell proliferation, migration, and differentiation, during brain development and neural crest migration. They play a role in the specification of positional identity, the proliferation of neural stem cells, and the differentiation of certain neuronal cell phenotypes. In general, they act as transcription factors in early embryogenesis and neuroembryogenesis from metazoans to higher vertebrates. The EMX1 and EMX2’s potential as tumor suppressor genes has been suggested in some cancers. Our work showed that EMX1/EMX2 act as tumor suppressors in sarcomas by repressing the activity of stem cell regulatory genes (OCT4, SOX2, KLF4, MYC, NANOG, NES, and PROM1). EMX protein downregulation, therefore, induced the malignance and stemness of cells both in vitro and in vivo. In murine knockout (KO) models lacking Emx genes, 3MC-induced sarcomas were more aggressive and infiltrative, had a greater capacity for tumor self-renewal, and had higher stem cell gene expression and nestin expression than those in wild-type models. These results showing that EMX genes acted as stemness regulators were reproduced in different subtypes of sarcoma. Therefore, it is possible that the EMX genes could have a generalized behavior regulating proliferation of neural crest-derived progenitors. Together, these results indicate that the EMX1 and EMX2 genes negatively regulate these tumor-altering populations or cancer stem cells, acting as tumor suppressors in sarcoma.


2021 ◽  
Vol 22 (4) ◽  
pp. 1824
Author(s):  
Matthias Mietsch ◽  
Rabea Hinkel

With cardiovascular diseases affecting millions of patients, new treatment strategies are urgently needed. The use of stem cell based approaches has been investigated during the last decades and promising effects have been achieved. However, the beneficial effect of stem cells has been found to being partly due to paracrine functions by alterations of their microenvironment and so an interesting field of research, the “stem- less” approaches has emerged over the last years using or altering the microenvironment, for example, via deletion of senescent cells, application of micro RNAs or by modifying the cellular energy metabolism via targeting mitochondria. Using autologous muscle-derived mitochondria for transplantations into the affected tissues has resulted in promising reports of improvements of cardiac functions in vitro and in vivo. However, since the targeted treatment group represents mainly elderly or otherwise sick patients, it is unclear whether and to what extent autologous mitochondria would exert their beneficial effects in these cases. Stem cells might represent better sources for mitochondria and could enhance the effect of mitochondrial transplantations. Therefore in this review we aim to provide an overview on aging effects of stem cells and mitochondria which might be important for mitochondrial transplantation and to give an overview on the current state in this field together with considerations worthwhile for further investigations.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 914
Author(s):  
Melanie V. Brady ◽  
Flora M. Vaccarino

The complexities of human neurodevelopment have historically been challenging to decipher but continue to be of great interest in the contexts of healthy neurobiology and disease. The classic animal models and monolayer in vitro systems have limited the types of questions scientists can strive to answer in addition to the technical ability to answer them. However, the tridimensional human stem cell-derived organoid system provides the unique opportunity to model human development and mimic the diverse cellular composition of human organs. This strategy is adaptable and malleable, and these neural organoids possess the morphogenic sensitivity to be patterned in various ways to generate the different regions of the human brain. Furthermore, recapitulating human development provides a platform for disease modeling. One master regulator of human neurodevelopment in many regions of the human brain is sonic hedgehog (SHH), whose expression gradient and pathway activation are responsible for conferring ventral identity and shaping cellular phenotypes throughout the neural axis. This review first discusses the benefits, challenges, and limitations of using organoids for studying human neurodevelopment and disease, comparing advantages and disadvantages with other in vivo and in vitro model systems. Next, we explore the range of control that SHH exhibits on human neurodevelopment, and the application of SHH to various stem cell methodologies, including organoids, to expand our understanding of human development and disease. We outline how this strategy will eventually bring us much closer to uncovering the intricacies of human neurodevelopment and biology.


2011 ◽  
Vol 2 (2) ◽  
Author(s):  
Nina Kosi ◽  
Dinko Mitrečić

AbstractNeurological diseases are recognized as one of the most significant burdens of the modern society. Therefore, a new therapeutic approach applicable to nervous system represents priority of today’s medicine. A rapid development of stem cell technology in the last two decades introduced a possibility to regenerate disease-affected nervous tissue. In this vein, stem cells are envisioned as a replacement for lost neurons, a source of trophic support, a therapeutic vehicle, and as a tool for in vitro modeling. This article reviews the current concepts in stem cell-based therapy of neurological diseases and comments ongoing efforts aiming at clinical translation.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Yaqi Li ◽  
Peiyuan Tang ◽  
Sanjun Cai ◽  
Junjie Peng ◽  
Guoqiang Hua

AbstractThree-dimensional cultured organoids have become a powerful in vitro research tool that preserves genetic, phenotypic and behavioral trait of in vivo organs, which can be established from both pluripotent stem cells and adult stem cells. Organoids derived from adult stem cells can be established directly from diseased epithelium and matched normal tissues, and organoids can also be genetically manipulated by CRISPR-Cas9 technology. Applications of organoids in basic research involve the modeling of human development and diseases, including genetic, infectious and malignant diseases. Importantly, accumulating evidence suggests that biobanks of patient-derived organoids for many cancers and cystic fibrosis have great value for drug development and personalized medicine. In addition, organoids hold promise for regenerative medicine. In the present review, we discuss the applications of organoids in the basic and translational research.


Sign in / Sign up

Export Citation Format

Share Document