scholarly journals Promoter architecture dictates cell-to-cell variability in gene expression

Science ◽  
2014 ◽  
Vol 346 (6216) ◽  
pp. 1533-1536 ◽  
Author(s):  
Daniel L. Jones ◽  
Robert C. Brewster ◽  
Rob Phillips

Variability in gene expression among genetically identical cells has emerged as a central preoccupation in the study of gene regulation; however, a divide exists between the predictions of molecular models of prokaryotic transcriptional regulation and genome-wide experimental studies suggesting that this variability is indifferent to the underlying regulatory architecture. We constructed a set of promoters in Escherichia coli in which promoter strength, transcription factor binding strength, and transcription factor copy numbers are systematically varied, and used messenger RNA (mRNA) fluorescence in situ hybridization to observe how these changes affected variability in gene expression. Our parameter-free models predicted the observed variability; hence, the molecular details of transcription dictate variability in mRNA expression, and transcriptional noise is specifically tunable and thus represents an evolutionarily accessible phenotypic parameter.

Blood ◽  
2000 ◽  
Vol 96 (5) ◽  
pp. 1716-1722 ◽  
Author(s):  
Takahisa Tarumoto ◽  
Shigehiko Imagawa ◽  
Ken Ohmine ◽  
Tadashi Nagai ◽  
Masato Higuchi ◽  
...  

Abstract NG-monomethyl-l-arginine (L-NMMA) has been reported to be elevated in uremic patients. Based on the hypothesis that the pathogenesis of the anemia of renal disease might be due to the perturbation of transcription factors of the erythropoietin (Epo) gene by L-NMMA, the present study was designed to investigate the effect of L-NMMA on Epo gene expression through the GATA transcription factor. L-NMMA caused decreased levels of NO, cyclic guanosine monophosphate (cGMP), and Epo protein in Hep3B cells. L-NAME (analogue of L-NMMA) also inhibited Epo production in anemic mice. Transfection of the Epo promoter-luciferase gene into Hep3B cells revealed that L-NMMA inhibited the Epo promoter activity. However, L-NMMA did not inhibit the Epo promoter activity when mutated Epo promoter (GATA to TATA) was transfected, and L-NMMA did not affect the enhancer activity. Electrophoretic mobility shift assays demonstrated the stimulation of GATA binding activity by L-NMMA. However, L-NMMA had no effect on the binding activity of hepatic nuclear factor-4, COUP-TF1, hypoxia-inducing factor-1, or NF-κB. Furthermore, cGMP inhibited the L-NMMA–induced GATA binding activity. L-NMMA also increased GATA-2 messenger RNA expression. These results demonstrate that L-NMMA suppresses Epo gene expression by up-regulation of the GATA transcription factor and support the hypothesis that L-NMMA is one of the candidate substances that underlie the pathogenesis of renal anemia.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3644-3644
Author(s):  
Annalisa Di Ruscio ◽  
Alexander K Ebralidze ◽  
Francesco D'Alò ◽  
Maria Teresa Voso ◽  
Giuseppe Leone ◽  
...  

Abstract Abstract 3644 Poster Board III-580 Little is currently known about the role of noncoding RNA transcripts (ncRNA) in gene regulation; although most, and perhaps all, gene loci express such transcripts. Our previous results with the PU.1 gene locus showed a shared transcription factor complex and chromatin configuration requirements for biogenesis of both messenger and ncRNAs. These ncRNAs were localized within the nuclear and cytoplasmic compartments. Disrupting ncRNAs in the cytoplasmic cellular fraction results in increased PU.1 mRNA and protein. Recently, we have focused on the C/EBPa gene locus and observed extensive noncoding transcription. The transcription factor C/EBPa plays a pivotal role in hematopoietic stem cell (HSC) commitment and differentiation. Expression of the C/EBPa gene is tightly regulated during normal hematopoietic development, and dysregulation of C/EBPa expression can lead to lung cancer and leukemia. However, little is known about how the C/EBPa gene is regulated in vivo. In this study, we characterize ncRNAs derived from the C/EBPa locus and demonstrate their functional role in regulation of C/EBPa gene expression. First, northern blot analysis and RT PCR determined a predominantly nuclear localization of the C/EBPa ncRNAs. Second, strand-specific quantitative RT PCR demonstrated a concordant expression of coding and noncoding C/EBPa transcripts. Next, we investigated the results of ablation of ncRNAs using a lentiviral vector containing ncRNA-targeting shRNAs on the expression of the C/EBPa gene. We have observed that reduced levels of ncRNAs leads to a significant downregulation of the expression of coding messenger RNA. These data strongly suggest that C/EBPa ncRNAs play an important role in maintaining optimal expression of the C/EBPa gene at different stages of hematopoiesis and makes targeting noncoding transcripts a novel and attractive tool in correcting aberrant gene expression levels. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1288-1288
Author(s):  
Charles Herbaux ◽  
Guillemette Marot ◽  
Elisabeth Bertrand ◽  
Natacha Broucqsault ◽  
Sylvie Zouitna-Galiègue ◽  
...  

Abstract Abstract 1288 Background. Approximately 30% of the patients who fulfil the criteria of Waldenström macroglobulinemia (WM) are diagnosed while asymptomatic, and will not require immediate therapy; these cases are called indolent WM (IWM). However, patients with a disease-related event will be considered for therapy, these cases are called symptomatic or aggressive WM (AWM). The physiopathology of these 2 groups remains unclear, and the mechanisms of progression have not been fully understood so far. We hypothesized that a gene signature that differentiates these two categories could be identified to better understand the underlying mechanisms of progression of WM. Methods. Seventeen patients diagnosed with WM (8 IWM and 9 AWM) were included in this study. We selected tumour cells from the bone marrow (BM) using mononuclear cell isolation, then B cell enrichment (B cell isolation kit, Myltenyi-Biotec, USA). The purity was confirmed by flow cytometry. Total RNA was extracted using the Trizol method. Gene expression profiling was performed using U133A arrays (Affymetrix, USA). Gene expression was normalized using the RMA algorithm. We ranked genes by fold-change of expression levels on a first series of 11 patients (5 IWM and 6 AWM) calculated with the ‘limma’ package in R. Next, we used a supervised classification to establish a gene expression profile to distinguish IWM from AWM. Therewith, we validated this profile on an independent set of 6 patients (3 IWM and 3 AWM). We then performed a pathway analysis using Ingenuity® analysis software. We confirmed gene expression deregulation with qRT-PCR on 3 candidate genes in the first series of patients. Genome-wide detection of copy number alteration and loss of heterozygosity were performed on 13 of the 17 WM cases, using the Genome-Wide Human SNP Array 6.0 (Affymetrix, USA). Finally, we investigated the functional consequences of the deregulation of these candidate genes in BCWM1 and MWCL1, both B cell lines originated from WM. Survival was studied using a colorimetric method with MTS (Promega, USA). Proliferation was analyzed using incorporation of a nucleoside analog (EdU) into DNA during active DNA synthesis (Invitrogen, USA). Results. The differential analysis has identified 82 probes, corresponding to 48 genes, significantly deregulated and capable of differentiating samples from IWM and AWM in an unsupervised classification. Moreover, with a supervised classification, this gene expression profile accurately classified 94% of the 17 WM samples, including the 6 WM of the independent validation set. The two molecular networks that appeared to play a major role in the physiopathology of IWM versus AWM were the plasma cell differentiation pathway and the AKT pathway. We have then identified 3 key genes in those 2 pathways, BACH2 and CIITA on the one hand and PTEN, respectively. We have then confirmed the deregulation of these gene expression levels by qRT-PCR in 3 IWM and 4 AWM; these 3 genes were over-expressed in IMW relatively to AMW. BACH2 is a B-cell-specific transcription factor known to be a tumour suppressor gene. It was shown that BACH2 reduces proliferation and induces cell death when over-expressed in B lymphoma tumour cells. We have thus pharmacologically over-expressed BACH2 in BCWM1 and MWCL1 and significantly reduced the proliferation and the survival of the two cell-lines. Further studies using BACH2 specific overexpression with lentiviral infection are underway, in vitro. The data will be presented at ASH. In order to further study the mechanisms of deregulation of BACH2 in IWM and AWM, we have conducted a genome wide SNP array study of 13 patients. Among those, 7 patients (4 IWM and 3 AWM) demonstrate a deletion of long arm of chromosome 6 (del6q), the most frequent chromosomal abnormality in WM. BACH2 gene is located on the 6q15 locus. Interestingly, we found that 3 out of the 3 AWM had a del6q that took in the 6q15 region, whereas 3 out of 4 of the IWM had a del6q preserving the 6q15 region. Therefore, haploinsufficiency could participate in the under-expression of BACH2 in aggressive WM; this hypothesis will be verified by using DNA qRT-PCR of BACH2. Conclusion. To the best of our knowledge, we have identified for the first time a specific gene expression signature that differentiates IWM and AWM. We have exposed several genes from this dataset, including BACH2, which is a candidate to better understand the underlying mechanisms of progression of WM. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Author(s):  
Maud Fagny ◽  
Marieke Lydia Kuijjer ◽  
Maike Stam ◽  
Johann Joets ◽  
Olivier Turc ◽  
...  

AbstractEnhancers are important regulators of gene expression during numerous crucial processes including tissue differentiation across development. In plants, their recent molecular characterization revealed their capacity to activate the expression of several target genes through the binding of transcription factors. Nevertheless, identifying these target genes at a genome-wide level remains a challenge, in particular in species with large genomes, where enhancers and target genes can be hundreds of kilobases away. Therefore, the contribution of enhancers to regulatory network is still poorly understood in plants. In this study, we investigate the enhancer-driven regulatory network of two maize tissues at different stages: leaves at seedling stage and husks (bracts) at flowering. Using a systems biology approach, we integrate genomic, epigenomic and transcriptomic data to model the regulatory relationship between transcription factors and their potential target genes. We identify regulatory modules specific to husk and V2-IST, and show that they are involved in distinct functions related to the biology of each tissue. We evidence enhancers exhibiting binding sites for two distinct transcription factor families (DOF and AP2/ERF) that drive the tissue-specificity of gene expression in seedling immature leaf and husk. Analysis of the corresponding enhancer sequences reveals that two different transposable element families (TIR transposon Mutator and MITE Pif/Harbinger) have shaped the regulatory network in each tissue, and that MITEs have provided new transcription factor binding sites that are involved in husk tissue-specificity.SignificanceEnhancers play a major role in regulating tissue-specific gene expression in higher eukaryotes, including angiosperms. While molecular characterization of enhancers has improved over the past years, identifying their target genes at the genome-wide scale remains challenging. Here, we integrate genomic, epigenomic and transcriptomic data to decipher the tissue-specific gene regulatory network controlled by enhancers at two different stages of maize leaf development. Using a systems biology approach, we identify transcription factor families regulating gene tissue-specific expression in husk and seedling leaves, and characterize the enhancers likely to be involved. We show that a large part of maize enhancers is derived from transposable elements, which can provide novel transcription factor binding sites crucial to the regulation of tissue-specific biological functions.


2020 ◽  
Vol 126 (7) ◽  
pp. 875-888 ◽  
Author(s):  
Samir Sissaoui ◽  
Jun Yu ◽  
Aimin Yan ◽  
Rui Li ◽  
Onur Yukselen ◽  
...  

Rationale: Significant progress has revealed transcriptional inputs that underlie regulation of artery and vein endothelial cell fates. However, little is known concerning genome-wide regulation of this process. Therefore, such studies are warranted to address this gap. Objective: To identify and characterize artery- and vein-specific endothelial enhancers in the human genome, thereby gaining insights into mechanisms by which blood vessel identity is regulated. Methods and Results: Using chromatin immunoprecipitation and deep sequencing for markers of active chromatin in human arterial and venous endothelial cells, we identified several thousand artery- and vein-specific regulatory elements. Computational analysis revealed that NR2F2 (nuclear receptor subfamily 2, group F, member 2) sites were overrepresented in vein-specific enhancers, suggesting a direct role in promoting vein identity. Subsequent integration of chromatin immunoprecipitation and deep sequencing data sets with RNA sequencing revealed that NR2F2 regulated 3 distinct aspects related to arteriovenous identity. First, consistent with previous genetic observations, NR2F2 directly activated enhancer elements flanking cell cycle genes to drive their expression. Second, NR2F2 was essential to directly activate vein-specific enhancers and their associated genes. Our genomic approach further revealed that NR2F2 acts with ERG (ETS-related gene) at many of these sites to drive vein-specific gene expression. Finally, NR2F2 directly repressed only a small number of artery enhancers in venous cells to prevent their activation, including a distal element upstream of the artery-specific transcription factor, HEY2 (hes related family bHLH transcription factor with YRPW motif 2). In arterial endothelial cells, this enhancer was normally bound by ERG, which was also required for arterial HEY2 expression. By contrast, in venous endothelial cells, NR2F2 was bound to this site, together with ERG, and prevented its activation. Conclusions: By leveraging a genome-wide approach, we revealed mechanistic insights into how NR2F2 functions in multiple roles to maintain venous identity. Importantly, characterization of its role at a crucial artery enhancer upstream of HEY2 established a novel mechanism by which artery-specific expression can be achieved.


2018 ◽  
Vol 115 (28) ◽  
pp. 7398-7403 ◽  
Author(s):  
Armin Raznahan ◽  
Neelroop N. Parikshak ◽  
Vijay Chandran ◽  
Jonathan D. Blumenthal ◽  
Liv S. Clasen ◽  
...  

A fundamental question in the biology of sex differences has eluded direct study in humans: How does sex-chromosome dosage (SCD) shape genome function? To address this, we developed a systematic map of SCD effects on gene function by analyzing genome-wide expression data in humans with diverse sex-chromosome aneuploidies (XO, XXX, XXY, XYY, and XXYY). For sex chromosomes, we demonstrate a pattern of obligate dosage sensitivity among evolutionarily preserved X-Y homologs and update prevailing theoretical models for SCD compensation by detecting X-linked genes that increase expression with decreasing X- and/or Y-chromosome dosage. We further show that SCD-sensitive sex-chromosome genes regulate specific coexpression networks of SCD-sensitive autosomal genes with critical cellular functions and a demonstrable potential to mediate previously documented SCD effects on disease. These gene coexpression results converge with analysis of transcription factor binding site enrichment and measures of gene expression in murine knockout models to spotlight the dosage-sensitive X-linked transcription factor ZFX as a key mediator of SCD effects on wider genome expression. Our findings characterize the effects of SCD broadly across the genome, with potential implications for human phenotypic variation.


Sign in / Sign up

Export Citation Format

Share Document