scholarly journals An intrinsic S/G2 checkpoint enforced by ATR

Science ◽  
2018 ◽  
Vol 361 (6404) ◽  
pp. 806-810 ◽  
Author(s):  
Joshua C. Saldivar ◽  
Stephan Hamperl ◽  
Michael J. Bocek ◽  
Mingyu Chung ◽  
Thomas E. Bass ◽  
...  

The cell cycle is strictly ordered to ensure faithful genome duplication and chromosome segregation. Control mechanisms establish this order by dictating when a cell transitions from one phase to the next. Much is known about the control of the G1/S, G2/M, and metaphase/anaphase transitions, but thus far, no control mechanism has been identified for the S/G2 transition. Here we show that cells transactivate the mitotic gene network as they exit the S phase through a CDK1 (cyclin-dependent kinase 1)–directed FOXM1 phosphorylation switch. During normal DNA replication, the checkpoint kinase ATR (ataxia-telangiectasia and Rad3-related) is activated by ETAA1 to block this switch until the S phase ends. ATR inhibition prematurely activates FOXM1, deregulating the S/G2 transition and leading to early mitosis, underreplicated DNA, and DNA damage. Thus, ATR couples DNA replication with mitosis and preserves genome integrity by enforcing an S/G2 checkpoint.

2014 ◽  
Vol 204 (2) ◽  
pp. 165-175 ◽  
Author(s):  
Maria M. Magiera ◽  
Elisabeth Gueydon ◽  
Etienne Schwob

Deoxyribonucleic acid (DNA) replication and chromosome segregation must occur in ordered sequence to maintain genome integrity during cell proliferation. Checkpoint mechanisms delay mitosis when DNA is damaged or upon replication stress, but little is known on the coupling of S and M phases in unperturbed conditions. To address this issue, we postponed replication onset in budding yeast so that DNA synthesis is still underway when cells should enter mitosis. This delayed mitotic entry and progression by transient activation of the S phase, G2/M, and spindle assembly checkpoints. Disabling both Mec1/ATR- and Mad2-dependent controls caused lethality in cells with deferred S phase, accompanied by Rad52 foci and chromosome missegregation. Thus, in contrast to acute replication stress that triggers a sustained Mec1/ATR response, multiple pathways cooperate to restrain mitosis transiently when replication forks progress unhindered. We suggest that these surveillance mechanisms arose when both S and M phases were coincidently set into motion by a unique ancestral cyclin–Cdk1 complex.


Development ◽  
2021 ◽  
Author(s):  
Wei-Ting Yueh ◽  
Vijay Pratap Singh ◽  
Jennifer L. Gerton

Aneuploidy is frequently observed in oocytes and early embryos, begging the question of how genome integrity is monitored and preserved during this critical period. SMC3 is a subunit of the cohesin complex that supports genome integrity, but its role in maintaining the genome in this window of mammalian development is unknown. We discovered that although depletion of Smc3 following meiotic S phase in mouse oocytes allowed accurate meiotic chromosome segregation, adult females were infertile. We provide evidence that DNA lesions accumulated following S phase in SMC3-deficient zygotes, followed by mitosis with lagging chromosomes, elongated spindles, micronuclei, and arrest at the 2-cell stage. Remarkably, although centromeric cohesion was defective, the dosage of SMC3 was sufficient to enable embryogenesis in juvenile mutant females. Our findings suggest that despite previous reports of aneuploidy in early embryos, chromosome missegregation in zygotes halts embryogenesis at the 2-cell stage. Smc3 is a maternal gene with essential functions in repair of spontaneous damage associated with DNA replication and subsequent chromosome segregation in zygotes, making cohesin a key protector of the zygotic genome.


2005 ◽  
Vol 168 (7) ◽  
pp. 999-1012 ◽  
Author(s):  
Jeff Bachant ◽  
Shannon R. Jessen ◽  
Sarah E. Kavanaugh ◽  
Candida S. Fielding

The budding yeast S phase checkpoint responds to hydroxyurea-induced nucleotide depletion by preventing replication fork collapse and the segregation of unreplicated chromosomes. Although the block to chromosome segregation has been thought to occur by inhibiting anaphase, we show checkpoint-defective rad53 mutants undergo cycles of spindle extension and collapse after hydroxyurea treatment that are distinct from anaphase cells. Furthermore, chromatid cohesion, whose dissolution triggers anaphase, is dispensable for S phase checkpoint arrest. Kinetochore–spindle attachments are required to prevent spindle extension during replication blocks, and chromosomes with two centromeres or an origin of replication juxtaposed to a centromere rescue the rad53 checkpoint defect. These observations suggest that checkpoint signaling is required to generate an inward force involved in maintaining preanaphase spindle integrity during DNA replication distress. We propose that by promoting replication fork integrity under these conditions Rad53 ensures centromere duplication. Replicating chromosomes can then bi-orient in a cohesin-independent manner to restrain untimely spindle extension.


2015 ◽  
Vol 210 (4) ◽  
pp. 565-582 ◽  
Author(s):  
Rune Troelsgaard Pedersen ◽  
Thomas Kruse ◽  
Jakob Nilsson ◽  
Vibe H. Oestergaard ◽  
Michael Lisby

Genome integrity is critically dependent on timely DNA replication and accurate chromosome segregation. Replication stress delays replication into G2/M, which in turn impairs proper chromosome segregation and inflicts DNA damage on the daughter cells. Here we show that TopBP1 forms foci upon mitotic entry. In early mitosis, TopBP1 marks sites of and promotes unscheduled DNA synthesis. Moreover, TopBP1 is required for focus formation of the structure-selective nuclease and scaffold protein SLX4 in mitosis. Persistent TopBP1 foci transition into 53BP1 nuclear bodies (NBs) in G1 and precise temporal depletion of TopBP1 just before mitotic entry induced formation of 53BP1 NBs in the next cell cycle, showing that TopBP1 acts to reduce transmission of DNA damage to G1 daughter cells. Based on these results, we propose that TopBP1 maintains genome integrity in mitosis by controlling chromatin recruitment of SLX4 and by facilitating unscheduled DNA synthesis.


2000 ◽  
Vol 11 (3) ◽  
pp. 1037-1045 ◽  
Author(s):  
Naka Hattori ◽  
Tyler C. Davies ◽  
Lynn Anson-Cartwright ◽  
James C. Cross

Endoreduplication is an unusual form of cell cycle in which rounds of DNA synthesis repeat in the absence of intervening mitoses. How G1/S cyclin-dependent kinase (Cdk) activity is regulated during the mammalian endocycle is poorly understood. We show here that expression of the G1/S Cdk inhibitor p57Kip2 is induced coincidentally with the transition to the endocycle in trophoblast giant cells.Kip2 mRNA is constitutively expressed during subsequent endocycles, but the protein level fluctuates. In trophoblast giant cells synchronized for the first few endocycles, the p57Kip2 protein accumulates only at the end of S-phase and then rapidly disappears a few hours before the onset of the next S-phase. The protein becomes stabilized by mutation of a C-terminal Cdk phosphorylation site. As a consequence, introduction of this stable form of p57Kip2 into giant cells blocks S-phase entry. These data imply that p57Kip2 is subject to phosphorylation-dependent turnover. Surprisingly, although this occurs in endoreduplicating giant cells, p57Kip2 is stable when ectopically expressed in proliferating trophoblast cells, indicating that these cells lack the mechanism for protein targeting and/or degradation. These data show that the appearance of p57Kip2punctuates the completion of DNA replication, whereas its turnover is subsequently required to initiate the next round of endoreduplication in trophoblast giant cells. Cyclical expression of a Cdk inhibitor, by terminating G1/S Cdk activity, may help promote the resetting of DNA replication machinery.


2008 ◽  
Vol 19 (5) ◽  
pp. 2267-2277 ◽  
Author(s):  
Alain Devault ◽  
Elisabeth Gueydon ◽  
Etienne Schwob

Cyclin-dependent (CDK) and Dbf4-dependent (DDK) kinases trigger DNA replication in all eukaryotes, but how these kinases cooperate to regulate DNA synthesis is largely unknown. Here, we show that budding yeast Mcm4 is phosphorylated in vivo during S phase in a manner dependent on the presence of five CDK phosphoacceptor residues within the N-terminal domain of Mcm4. Mutation to alanine of these five sites (mcm4-5A) abolishes phosphorylation and decreases replication origin firing efficiency at 22°C. Surprisingly, the loss of function mcm4-5A mutation confers cold and hydroxyurea sensitivity to DDK gain of function conditions (mcm5/bob1 mutation or DDK overexpression), implying that phosphorylation of Mcm4 by CDK somehow counteracts negative effects produced by ectopic DDK activation. Deletion of the S phase cyclins Clb5,6 is synthetic lethal with mcm4-5A and mimics its effects on DDK up mutants. Furthermore, we find that Clb5 expressed late in the cell cycle can still suppress the lethality of clb5,6Δ bob1 cells, whereas mitotic cyclins Clb2, 3, or 4 expressed early cannot. We propose that the N-terminal extension of eukaryotic Mcm4 integrates regulatory inputs from S-CDK and DDK, which may play an important role for the proper assembly or stabilization of replisome–progression complexes.


2018 ◽  
Author(s):  
Annie S. Tam ◽  
Veena Mathew ◽  
Tianna S. Sihota ◽  
Anni Zhang ◽  
Peter C. Stirling

To achieve genome stability cells must coordinate the action of various DNA transactions including DNA replication, repair, transcription and chromosome segregation. How transcription and RNA processing enable genome stability is only partly understood. Two predominant models have emerged: one involving changes in gene expression that perturb other genome maintenance factors, and another in which genotoxic DNA:RNA hybrids, called R-loops, impair DNA replication. Here we characterize genome instability phenotypes in a panel yeast splicing factor mutants and find that mitotic defects, and in some cases R-loop accumulation, are causes of genome instability. Genome instability in splicing mutants is exacerbated by loss of the spindle-assembly checkpoint protein Mad1. Moreover, removal of the intron from the α-tubulin gene TUB1 restores genome integrity. Thus, while R-loops contribute in some settings, defects in yeast splicing predominantly lead to genome instability through effects on gene expression.


1979 ◽  
Vol 39 (1) ◽  
pp. 215-233
Author(s):  
KIM NASMYTH ◽  
PAUL NURSE ◽  
R. S. S. FRASER

Request for reprints to Paul Nurse. Two isotopic methods for measuring DNA replication in the fission yeast Schizosaccharomyces pombe are described. The first is a method for measuring the total quantity of [3H]uracil incorporated into DNA after pulse labelling. The second is a means of detecting DNA replication in single cells by autoradiography. Both of these techniques have been used to investigate the timing and duration of S-phase in a series of mutant strains whose cell mass at division varies over a 3-fold range. The results support the hypothesis that in S. pombe there are 2 different controls over the timing of S-phase: an attainment of a critical cell mass and a dependency upon the completion of the previous mitosis coupled with a short minimum time in G1. Strains whose cell mass at birth is above this critical level initiate DNA replication almost immediately after septation, that is, very soon after the previous mitosis. Strains whose cell mass at birth is below the critical level do not initiate replication until the critical cell mass is attained. The duration of S-phase has been estimated from the proportion of cells whose nuclei are labelled after a pulse of given duration. S-phase is short in S. pombe, lasting only about 0.1 of a cell cycle in wild type. Cell mass at S-phase does not have any consistent effect on this length. We have also investigated the degree of synchrony of S-phase initiation in daughter cells, and have found that, in a cell cycle 240 min long, their S-phases are initiated within 1–2 min of each other. This result indicates that between sisters variability in the duration of the G1 phase is small compared with variability in the total cell cycle time, and argues against the hypothesis that the rate of cell cycle traverse is determined by a random transition in G1.


1997 ◽  
Vol 17 (6) ◽  
pp. 3315-3322 ◽  
Author(s):  
P A Tavormina ◽  
Y Wang ◽  
D J Burke

Checkpoints prevent inaccurate chromosome segregation by inhibiting cell division when errors in mitotic processes are encountered. We used a temperature-sensitive mutation, dbf4, to examine the requirement for DNA replication in establishing mitotic checkpoint arrest. We used gamma-irradiation to induce DNA damage and hydroxyurea to limit deoxyribonucleotides in cells deprived of DBF4 function to investigate the requirement for DNA replication in DNA-responsive checkpoints. In the absence of DNA replication, mitosis was not inhibited by these treatments, which normally activate the DNA damage and DNA replication checkpoints. Our results support a model that indicates that the assembly of replication structures is critical for cells to respond to defects in DNA metabolism. We show that activating the spindle checkpoint with nocodazole does not require prior progression through S phase but does require a stable kinetochore.


2019 ◽  
Vol 47 (21) ◽  
pp. 11268-11283 ◽  
Author(s):  
Lina Cipolla ◽  
Federica Bertoletti ◽  
Antonio Maffia ◽  
Chih-Chao Liang ◽  
Alan R Lehmann ◽  
...  

Abstract Accurate DNA replication is critical for the maintenance of genome integrity and cellular survival. Cancer-associated alterations often involve key players of DNA replication and of the DNA damage-signalling cascade. Post-translational modifications play a fundamental role in coordinating replication and repair and central among them is ubiquitylation. We show that the E3 ligase UBR5 interacts with components of the replication fork, including the translesion synthesis (TLS) polymerase polη. Depletion of UBR5 leads to replication problems, such as slower S-phase progression, resulting in the accumulation of single stranded DNA. The effect of UBR5 knockdown is related to a mis-regulation in the pathway that controls the ubiquitylation of histone H2A (UbiH2A) and blocking this modification is sufficient to rescue the cells from replication problems. We show that the presence of polη is the main cause of replication defects and cell death when UBR5 is silenced. Finally, we unveil a novel interaction between polη and H2A suggesting that UbiH2A could be involved in polη recruitment to the chromatin and the regulation of TLS.


Sign in / Sign up

Export Citation Format

Share Document