Dual enhancement of T and NK cell function by pulsatile inhibition of SHIP1 improves antitumor immunity and survival

2017 ◽  
Vol 10 (500) ◽  
pp. eaam5353 ◽  
Author(s):  
Matthew Gumbleton ◽  
Raki Sudan ◽  
Sandra Fernandes ◽  
Robert W. Engelman ◽  
Christopher M. Russo ◽  
...  
2019 ◽  
Vol 12 (596) ◽  
pp. eaat7527 ◽  
Author(s):  
Jai Rautela ◽  
Laura F. Dagley ◽  
Carolina C. de Oliveira ◽  
Iona S. Schuster ◽  
Soroor Hediyeh-Zadeh ◽  
...  

Natural killer (NK) cells are innate lymphocytes that play a major role in immunosurveillance against tumor initiation and metastatic spread. The signals and checkpoints that regulate NK cell fitness and function in the tumor microenvironment are not well defined. Transforming growth factor–β (TGF-β) is a suppressor of NK cells that inhibits interleukin-15 (IL-15)–dependent signaling events and increases the abundance of receptors that promote tissue residency. Here, we showed that NK cells express the type I activin receptor ALK4, which, upon binding to its ligand activin-A, phosphorylated SMAD2/3 to suppress IL-15–mediated NK cell metabolism. Activin-A impaired human and mouse NK cell proliferation and reduced the production of granzyme B to impair tumor killing. Similar to TGF-β, activin-A also induced SMAD2/3 phosphorylation and stimulated NK cells to increase their cell surface expression of several markers of ILC1 cells. Activin-A also induced these changes in TGF-β receptor–deficient NK cells, suggesting that activin-A and TGF-β stimulate independent pathways that drive SMAD2/3-mediated NK cell suppression. Last, inhibition of activin-A by follistatin substantially slowed orthotopic melanoma growth in mice. These data highlight the relevance of examining TGF-β–independent SMAD2/3 signaling mechanisms as a therapeutic axis to relieve NK cell suppression and promote antitumor immunity.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yuhan Sun ◽  
Alexander James Sedgwick ◽  
Md Abdullah-Al-Kamran Khan ◽  
Yaseelan Palarasah ◽  
Stefano Mangiola ◽  
...  

Activation of natural killer (NK) cell function is regulated by cytokines, such as IL-2, and secreted factors upregulated in the tumor microenvironment, such as platelet-derived growth factor D (PDGF-DD). In order to elucidate a clinical role for these important regulators of NK cell function in antitumor immunity, we generated transcriptional signatures representing resting, IL-2-expanded, and PDGF-DD-activated, NK cell phenotypes and established their abundance in The Cancer Genome Atlas bladder cancer (BLCA) dataset using CIBERSORT. The IL-2-expanded NK cell phenotype was the most abundant in low and high grades of BLCA tumors and was associated with improved prognosis. In contrast, PDGFD expression was associated with numerous cancer hallmark pathways in BLCA tumors compared with normal bladder tissue, and a high tumor abundance of PDGFD transcripts and the PDGF-DD-activated NK cell phenotype were associated with a poor BLCA prognosis. Finally, high tumor expression of transcripts encoding the activating NK cell receptors, KLRK1 and the CD160–TNFRSF14 receptor–ligand pair, was strongly correlated with the IL-2-expanded NK cell phenotype and improved BLCA prognosis. The transcriptional parameters we describe may be optimized to improve BLCA patient prognosis and risk stratification in the clinic and potentially provide gene targets of therapeutic significance for enhancing NK cell antitumor immunity in BLCA.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 263
Author(s):  
Philip Rosenstock ◽  
Thomas Kaufmann

Sialic acids are sugars with a nine-carbon backbone, present on the surface of all cells in humans, including immune cells and their target cells, with various functions. Natural Killer (NK) cells are cells of the innate immune system, capable of killing virus-infected and tumor cells. Sialic acids can influence the interaction of NK cells with potential targets in several ways. Different NK cell receptors can bind sialic acids, leading to NK cell inhibition or activation. Moreover, NK cells have sialic acids on their surface, which can regulate receptor abundance and activity. This review is focused on how sialic acids on NK cells and their target cells are involved in NK cell function.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Elham Ashouri ◽  
Karan Rajalingam ◽  
Shaghik Barani ◽  
Shirin Farjadian ◽  
Abbas Ghaderi ◽  
...  

AbstractHuman leukocyte antigen (HLA) class I-specific killer-cell immunoglobulin-like receptors (KIR) regulate natural killer (NK) cell function in eliminating malignancy. Breast cancer (BC) patients exhibit reduced NK-cytotoxicity in peripheral blood. To test the hypothesis that certain KIR-HLA combinations impairing NK-cytotoxicity predispose to BC risk, we analyzed KIR and HLA polymorphisms in 162 women with BC and 278 controls. KIR-Bx genotypes increased significantly in BC than controls (83.3% vs. 71.9%, OR 1.95), and the increase was more pronounced in advanced-cancer (OR 5.3). No difference was observed with inhibitory KIR (iKIR) and HLA-ligand combinations. The activating KIR (aKIR) and HLA-ligand combinations, 2DS1 + C2 (OR 2.98) and 3DS1 + Bw4 (OR 2.6), were significantly increased in advanced-BC. All patients with advanced-cancer carrying 2DS1 + C2 or 3DS1 + Bw4 also have their iKIR counterparts 2DL1 and 3DL1, respectively. Contrarily, the 2DL1 + C2 and 3DL1 + Bw4 pairs without their aKIR counterparts are significantly higher in controls. These data suggest that NK cells expressing iKIR to the cognate HLA-ligands in the absence of putative aKIR counterpart are instrumental in antitumor response. These data provide a new framework for improving the utility of genetic risk scores for individualized surveillance.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Natalie Eaton-Fitch ◽  
Hélène Cabanas ◽  
Stanley du Preez ◽  
Donald Staines ◽  
Sonya Marshall-Gradisnik

Abstract Background Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a serious multifactorial disorder. The origin remains ambiguous, however reduced natural killer (NK) cell cytotoxicity is a consistent immunological feature of ME/CFS. Impaired transient receptor potential melastatin 3 (TRPM3), a phosphatidylinositol dependent channel, and impaired calcium mobilisation have been implicated in ME/CFS pathology. This investigation aimed to examine the localisation of TRPM3 at the NK cell plasma membrane and co-localisation with phosphatidylinositol 4,5-bisphosphate (PIP2). The effect of IL-2 priming and treatment using pregnenolone sulfate (PregS) and ononetin on TRPM3 co-localisation and NK cell cytotoxicity in ME/CFS patients and healthy controls (HC) was also investigated. Methods NK cells were isolated from 15 ME/CFS patients and 15 age- and sex-matched HC. Immunofluorescent technique was used to determine co-localisation of TRPM3 with the NK cell membrane and with PIP2 of ME/CFS patients and HC. Flow cytometry was used to determine NK cell cytotoxicity. Following IL-2 stimulation and treatment with PregS and ononetin changes in co-localisation and NK cell cytotoxicity were measured. Results Overnight treatment of NK cells with PregS and ononetin resulted in reduced co-localisation of TRPM3 with PIP2 and actin in HC. Co-localisation of TRPM3 with PIP2 in NK cells was significantly reduced in ME/CFS patients compared with HC following priming with IL-2. A significant increase in co-localisation of TRPM3 with PIP2 was reported following overnight treatment with ononetin within ME/CFS patients and between groups. Baseline NK cell cytotoxicity was significantly reduced in ME/CFS patients; however, no changes were observed following overnight incubation with IL-2, PregS and ononetin between HC and ME/CFS patients. IL-2 stimulation significantly enhanced NK cell cytotoxicity in HC and ME/CFS patients. Conclusion Significant changes in co-localisation suggest PIP2-dependent TRPM3 function may be impaired in ME/CFS patients. Stimulation of NK cells with IL-2 significantly enhanced cytotoxic function in ME/CFS patients demonstrating normal function compared with HC. A crosstalk exists between IL-2 and TRPM3 intracellular signalling pathways which are dependent on Ca2+ influx and PIP2. While IL-2R responds to IL-2 binding in vitro, Ca2+ dysregulation and impaired intracellular signalling pathways impede NK cell function in ME/CFS patients.


2021 ◽  
Author(s):  
Julia Szekeres-Bartho ◽  
Timea Csabai ◽  
Eva Gorgey

AbstractPaternal antigens expressed by the foetus are recognized as foreign. Therefore,—according to the rules of transplantation immunity—the foetus ought to be “rejected”. However, during normal gestation, maternal immune functions are re-adjusted, in order to create a favourable environment for the developing foetus. Some of the mechanisms that contribute to the altered immunological environment, for example, the cytokine balance and NK cell function, with special emphasis on the role of progesterone and the progesterone-induced blocking factor (PIBF) will be reviewed.


Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1577
Author(s):  
Matteo Tanzi ◽  
Michela Consonni ◽  
Michela Falco ◽  
Federica Ferulli ◽  
Enrica Montini ◽  
...  

The limited efficacy of Natural Killer (NK) cell-based immunotherapy results in part from the suboptimal expansion and persistence of the infused cells. Recent reports suggest that the generation of NK cells with memory-like properties upon in vitro activation with defined cytokines might be an effective way of ensuring long-lasting NK cell function in vivo. Here, we demonstrate that activation with IL-12, IL-15 and IL-18 followed by a one-week culture with optimal doses of Interleukin (IL-2) and IL-15 generates substantial numbers of memory-like NK cells able to persist for at least three weeks when injected into NOD scid gamma (NSG) mice. This approach induces haploidentical donor-derived memory-like NK cells that are highly lytic against patients’ myeloid or lymphoid leukemia blasts, independent of the presence of alloreactive cell populations in the donor and with negligible reactivity against patients’ non-malignant cells. Memory-like NK cells able to lyse autologous tumor cells can also be generated from patients with solid malignancies. The anti-tumor activity of allogenic and autologous memory-like NK cells is significantly greater than that displayed by NK cells stimulated overnight with IL-2, supporting their potential therapeutic value both in patients affected by high-risk acute leukemia after haploidentical hematopoietic stem cell transplantation and in patients with advanced solid malignancies.


2013 ◽  
Vol 19 (9) ◽  
pp. 1173-1177 ◽  
Author(s):  
Yujie Liu ◽  
Liqing Wang ◽  
Jarrod Predina ◽  
Rongxiang Han ◽  
Ulf H Beier ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document