scholarly journals Metabolomics Guides Rational Development of a Simplified Cell Culture Medium for Drug Screening against Trypanosoma brucei

2013 ◽  
Vol 57 (6) ◽  
pp. 2768-2779 ◽  
Author(s):  
Darren J. Creek ◽  
Brunda Nijagal ◽  
Dong-Hyun Kim ◽  
Federico Rojas ◽  
Keith R. Matthews ◽  
...  

ABSTRACTIn vitroculture methods underpin many experimental approaches to biology and drug discovery. The modification of established cell culture methods to make them more biologically relevant or to optimize growth is traditionally a laborious task. Emerging metabolomic technology enables the rapid evaluation of intra- and extracellular metabolites and can be applied to the rational development of cell culture media. In this study, untargeted semiquantitative and targeted quantitative metabolomic analyses of fresh and spent media revealed the major nutritional requirements for the growth of bloodstream formTrypanosoma brucei. The standard culture medium (HMI11) contained unnecessarily high concentrations of 32 nutrients that were subsequently removed to make the concentrations more closely resemble those normally found in blood. Our new medium, Creek's minimal medium (CMM), supportsin vitrogrowth equivalent to that in HMI11 and causes no significant perturbation of metabolite levels for 94% of the detected metabolome (<3-fold change; α = 0.05). Importantly, improved sensitivity was observed for drug activity studies in whole-cell phenotypic screenings and in the metabolomic mode of action assays. Four-hundred-fold 50% inhibitory concentration decreases were observed for pentamidine and methotrexate, suggesting inhibition of activity by nutrients present in HMI11. CMM is suitable for routine cell culture and offers important advantages for metabolomic studies and drug activity screening.

2021 ◽  
Author(s):  
David Hardman ◽  
Katharina Hennig ◽  
Edgar R. Gomes ◽  
William Roman ◽  
Miguel Oscar Bernabeu

Many of the protocols in contemporary tissue engineering remain insufficiently optimised. Methodologies for culturing the complex structures of muscle tissue are particularly lacking, both in terms of quality and quantity of mature cells. Here, we analyse images from in vitro experimentation to quantify the effects of the composition of culture media on mouse-derived myoblast behaviour and myotube cell quality. We then apply computational modelling to predict the optimum range of media compositions for culturing. We define metrics of uniformity of myonuclei distribution as an early indicator of cell quality and difference in myonuclei density over time as an indicator of cell quantity. Analysis of live and static images of muscle cell differentiation revealed that changes in culture media result in significant changes in indicators of cell quantity and quality as well as changes in myoblast migratory behaviour. By describing media composition as a set of functions of cell behaviour we designed a model for predicting cell quality. Cell behaviours were taken directly from experimental images or inferred using Approximate Bayesian Computation and applied as inputs to an agent-based model of cell differentiation with cell quality indicators as outputs. Our results suggest that culturing muscle cells in a neural cell differentiation medium does not diminish cell quality. We show that, while high concentrations of serum are detrimental to cell development, increasing serum concentration raises the total amount of myoblast fusion, leading to a trade-off between the quantity and quality of cells produced when choosing a culture medium. Our numerical results provided a good prediction of experimental results for media with 5% serum provided the background cell proliferation rate was known.


Agrologia ◽  
2018 ◽  
Vol 1 (1) ◽  
Author(s):  
S. Tuhuteru ◽  
Meity L Hehanussa ◽  
Simon H.T Raharjo

Dendrobium anosmum is one of natural orchids in Indonesia. Optimization of medium composition for orchid propagation through in vitro culture is necessary to enhance propagule multiplication capabilities and quality. This study was aimed to study the influence of concentration of coconut water in culture medium on in vitro growth and development of D. anosmum orchid species and to determine the optimal coconut water concentration in culture media.  The experiment were arranged in a Completely Randomized Design with four treatments and eight replications. The treatments consisted of the addition of coconut water with concentrations: 0 ml•l -1 (control), 50 ml•l-1, 100 ml•l-1 and 150 ml•l-1. The results showed that addition of coconut water in culture medium gave different effect on shoot growth and multiplication of D. anosmum orchids.  Coconut water concentration of 100 ml•l-1 was the best concentration for growth and multiplication of D. anosmum orchids, based on both shoots and roots growth, plantlet height and wet weight.


2021 ◽  
Vol 2 (2) ◽  
pp. 538-553
Author(s):  
Natacha Coelho ◽  
Alexandra Filipe ◽  
Bruno Medronho ◽  
Solange Magalhães ◽  
Carla Vitorino ◽  
...  

In vitro culture is an important biotechnological tool in plant research and an appropriate culture media is a key for a successful plant development under in vitro conditions. The use of natural compounds to improve culture media has been growing and biopolymers are interesting alternatives to synthetic compounds due to their low toxicity, biodegradability, renewability, and availability. In the present study, different culture media containing one biopolymer (chitosan, gum arabic) or a biopolymer derivative [hydroxyethyl cellulose (HEC), carboxymethyl cellulose (CMC)], at 100 or 1000 mg L−1, were tested regarding their influence on the growth and physiological responses of Thymus lotocephalus in vitro culture. Cellulose-based biopolymers (HEC and CMC) and gum arabic were used for the first time in plant culture media. The results showed that CMC at 100 mg L−1 significantly improved shoot elongation while chitosan, at the highest concentration, was detrimental to T. lotocephalus. Concerning only the evaluated physiological parameters, all tested biopolymers and biopolymer derivatives are safe to plants as there was no evidence of stress-induced changes on T. lotocephalus. The rheological and microstructural features of the culture media were assessed to understand how the biopolymers and biopolymer derivatives added to the culture medium could influence shoot growth. As expected, all media presented a gel-like behaviour with minor differences in the complex viscosity at the beginning of the culture period. Most media showed increased viscosity overtime. The surface area increased with the addition of biopolymers and biopolymer derivatives to the culture media and the average pore size was considerably lower for CMC at 100 mg L−1. The smaller pores of this medium might be related to a more efficient nutrients and water uptake by T. lotocephalus shoots, leading to a significant improvement in shoot elongation. In short, this study demonstrated that the different types of biopolymers and biopolymer derivatives added to culture medium can modify their microstructure and at the right concentrations, are harmless to T. lotocephalus shoots growing in vitro, and that CMC improves shoot length.


1982 ◽  
Vol 57 (3) ◽  
pp. 334-340 ◽  
Author(s):  
Kamal S. Paul ◽  
Eric T. Whalley ◽  
Christine Forster ◽  
Richard Lye ◽  
John Dutton

✓ The authors have studied the ability of prostacyclin to reverse contractions of human basilar arteries in vitro that were induced by a wide range of substances implicated in the etiology of cerebral arterial spasm. Prostacyclin (10−10 to 10−6M) caused a dose-related reversal of contractions induced by 5-hydroxytryptamine, noradrenaline, angiotensin II, prostaglandin (PG)F2α, and U-46619 (a thromboxane-A2 mimetic). These agents were tested at concentrations or volumes that produced almost maximum or maximum responses and those that produced approximately 50% of the maximum response. Contractions induced by maximum concentrations of angiotensin II and U-46619 were least affected by prostacyclin. In addition, contractions induced by thromboxane-A2 generated from guinea-pig lung were reversed in a dose-dependent fashion by prostacyclin. This ability of prostacyclin to physiologically antagonize contractions of the human basilar artery in vitro induced by high concentrations of various spasmogenic agents suggests that such a potent vasodilator agent or more stable analogue may be of value in the treatment of such disorders as cerebral arterial spasm following subarachnoid hemorrhage.


Author(s):  
Gabriela de Oliveira Fernandes ◽  
Marcella Pecora Milazzotto ◽  
Andrei Antonioni Guedes Fidelis ◽  
Taynan Stonoga Kawamoto ◽  
Ligiane de Oliveira Leme ◽  
...  

Abstract The present study aimed to identify biomarkers to assess the quality of in vitro produced (IVP) bovine embryos in the culture media. IVP embryos on Day (D) 5 of development were transferred to individual drops, where they were maintained for the last 48 h of culture. Thereafter, the medium was collected and the embryos were transferred to the recipients. After pregnancy diagnosis, the media were grouped into the pregnant and nonpregnant groups. The metabolic profiles of the media were analyzed via electrospray ionization mass spectrometry, and the concentrations of pyruvate, lactate, and glutamate were assessed using fluorimetry. The spectrometric profile revealed that the media from embryos from the pregnant group presented a higher signal intensity compared to that of the nonpregnant group; the ions 156.13 Da [M + H]+, 444.33 Da [M + H]+, and 305.97 Da [M + H]+ were identified as biomarkers. Spent culture medium from expanded blastocysts (Bx) that established pregnancy had a greater concentration of pyruvate (p = 0.0174) and lesser concentration of lactate (p = 0.042) than spent culture medium from Bx that did not establish pregnancy. Moreover, pyruvate in the culture media of Bx can predict pregnancy with 90.9% sensitivity and 75% specificity. In conclusion, we identified markers in the culture media that helped in assessing the most viable IVP embryos with a greater potential to establish pregnancy.


Author(s):  
Alfabetian Harjuno Condro Haditomo ◽  
Angela Mariana Lusiastuti ◽  
Widanarni Widanarni

ABSTRAK   Pengendalian penyakit bakterial yang umum dilakukan dengan pemakaian antibiotik atau  bahan kimia sudah tidak diperbolehkan lagi karena menimbulkan patogen yang resisten  terhadap bahan kimia tersebut, terlebih jika penggunaan tidak sesuai dengan anjuran yang diberikan. Dampak negatif terhadap kesehatan konsumen berupa residu antibiotik juga menjadi pertimbangan yang harus diperhatikan. Manipulasi terhadap populasi mikroba yang berada di perairan guna pencegahan sebelum terjadinya serangan bakteri yang bersifat mematikan perlu dilakukan sebagaimana konsep probiotik sebagai biokontrol. Tujuan penelitian ini adalah menguji kandidat probiotik dalam menekan atau menghambat bakteri patogen Aeromonas hydrophila. Penelitian ini dilaksananakan dalam dua tahap. Tahap pertama adalah tahap pengujian bakteri kandidat probiotik secara in vitro menggunakan metode zona hambat dan kultur bersama pada media agar.  Tahap kedua adalah uji tentang bakteri kandidat probiotik dengan patogen pada media budidaya. Hasil terbaik penelitian tahap pertama pada  uji kultur bersama antara kandidat probiotik B. firmus dengan A. hydrophila pada skala in vitro adalah dengan penambahan probiotik  B. firmus sebanyak 108 cfu/ml. Sedangkan pada penelitian tahap kedua didapatkan hasil berturut-turut perlakuan D dengan tingkat kelangsungan hidup (SR) mencapai 90%, perlakuan C dengan SR 75%, perlakuan A dengan SR 50% dan perlakuan K dengan SR 50%.   Kata kunci: Bacillus firmus, probiotik, Aeromonas hydrophila, media budidaya   ABSTRACT  Controlling bacterial disease with the use of antibiotics or chemicals is no longer allowed as it results in pathogens that are resistant to the chemicals, especially when not in accordance with the recommendations provided. The negative impactsof the antibiotics residues on the consumers’ health  also need to be considered. Manipulation of microbial populations present in the waters as preventation before the lethal attack of bacteria needs to be done which is in accordance with the concept of probiotics as biocontrol.The purpose of this study was to test the probiotic candidates in suppressing or inhibiting pathogenic bacteria Aeromonas hydrophila. This study was conducted in two stages. The first stage was to test a candidate probiotic bacteria in vitro using culture methods and inhibition zone on the media together. The second stage wasto test candidate probiotic bacteria to pathogens on the cultivation media. The best results in the first phase of the research is shared culture test between probiotic candidate B. FIRMUS with A. hydrophila on vitro scale is the addition of the probiotic B. FIRMUS 108 cfu / ml. While in the second phase of the research results obtained successively: treatment D with a survival rate (SR) reaches 90%, treatment C with SR 75%, treatment A with SR 50% and treatment K with SR 50%. Keywords: Bacillus FIRMUS, probiotics, Aeromonas hydrophila, media cultivation


2015 ◽  
Vol 60 (3) ◽  
pp. 1226-1233 ◽  
Author(s):  
Petros Ioannou ◽  
Aggeliki Andrianaki ◽  
Tonia Akoumianaki ◽  
Irene Kyrmizi ◽  
Nathaniel Albert ◽  
...  

The modestin vitroactivity of echinocandins againstAspergillusimplies that host-related factors augment the action of these antifungal agentsin vivo. We found that, in contrast to the other antifungal agents (voriconazole, amphotericin B) tested, caspofungin exhibited a profound increase in activity against variousAspergillusspecies under conditions of cell culture growth, as evidenced by a ≥4-fold decrease in minimum effective concentrations (MECs) (P= 0. 0005). Importantly, the enhanced activity of caspofungin againstAspergillusspp. under cell culture conditions was strictly dependent on serum albumin and was not observed with the other two echinocandins, micafungin and anidulafungin. Of interest, fluorescently labeled albumin bound preferentially on the surface of germinatingAspergillushyphae, and this interaction was further enhanced upon treatment with caspofungin. In addition, supplementation of cell culture medium with albumin resulted in a significant, 5-fold increase in association of fluorescently labeled caspofungin withAspergillushyphae (P< 0.0001). Collectively, we found a novel synergistic interaction between albumin and caspofungin, with albumin acting as a potential carrier molecule to facilitate antifungal drug delivery toAspergillushyphae.


Sign in / Sign up

Export Citation Format

Share Document