scholarly journals Establishment of a Cell-Based Assay for Screening of Compounds Inhibiting Very Early Events in the Cytomegalovirus Replication Cycle and Characterization of a Compound Identified Using the Assay

2008 ◽  
Vol 52 (7) ◽  
pp. 2420-2427 ◽  
Author(s):  
Yoshiko Fukui ◽  
Keiko Shindoh ◽  
Yumiko Yamamoto ◽  
Shin Koyano ◽  
Isao Kosugi ◽  
...  

ABSTRACT To simplify the detection of infectious human cytomegalovirus (HCMV), we generated a cell line that produced luciferase in a dose-dependent manner upon HCMV infection. Using this cell line, we identified anti-HCMV compounds from a diverse library of 9,600 compounds. One of them, 1-(3,5-dichloro-4-pyridyl)piperidine-4-carboxamide (DPPC), was effective against HCMV (Towne strain) infection of human lung fibroblast cells at a 50% effective concentration of 2.5 μM. DPPC also inhibited the growth of clinical HCMV isolates and guinea pig and mouse cytomegaloviruses. Experiments using various time frames for treatment of the cells with DPPC demonstrated that DPPC was effective during the first 24 h after HCMV infection. DPPC treatment decreased not only viral DNA replication but also IE1 and IE2 expression at mRNA and protein levels in the HCMV-infected cells. However, DPPC did not inhibit the attachment of HCMV particles to the cell surface. DPPC is a unique compound that targets the very early phase of cytomegalovirus infection, probably by disrupting a pathway that is important after viral entry but before immediate-early gene expression.

Author(s):  
Elizabeth C Clarke ◽  
Robert A Nofchissey ◽  
Chunyan Ye ◽  
Steven B Bradfute

Abstract The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic poses an unprecedented challenge for health care and the global economy. Repurposing drugs that have shown promise in inhibiting other viral infections could allow for more rapid dispensation of urgently needed therapeutics. The Spike protein of SARS-CoV-2 is extensively glycosylated with 22 occupied N glycan sites and is required for viral entry. In other glycosylated viral proteins, glycosylation is required for interaction with calnexin and chaperone-mediated folding in the endoplasmic reticulum, and prevention of this interaction leads to unfolded viral proteins and thus inhibits viral replication. As such, we investigated two iminosugars, celgosivir, a prodrug of castanospermine, and UV-4, or N-(9-methoxynonyl)-1-deoxynojirimycin, a deoxynojirimycin derivative. Iminosugars are known inhibitors of the α-glucosidase I and II enzymes and were effective at inhibiting authentic SARS-CoV-2 viral replication in a cell culture system. Celgosivir prevented SARS-CoV-2-induced cell death and reduced viral replication and Spike protein levels in a dose-dependent manner in culture with Vero E6 cells. Castanospermine, the active form of celgosivir, was also able to inhibit SARS-CoV-2, confirming the canonical castanospermine mechanism of action of celgosivir. The monocyclic UV-4 also prevented SARS-CoV-2-induced death and reduced viral replication after 24 h of treatment, although the reduction in viral copies was lost after 48 h. Our findings suggest that iminosugars should be urgently investigated as potential SARS-CoV-2 inhibitors.


2001 ◽  
Vol 75 (8) ◽  
pp. 3613-3625 ◽  
Author(s):  
Zhenping Chen ◽  
Eugene Knutson ◽  
Alexander Kurosky ◽  
Thomas Albrecht

ABSTRACT Human cytomegalovirus (HCMV) stimulates arrested cells to enter the cell cycle by activating cyclin-dependent kinases (Cdks), notably Cdk2. Several mechanisms are involved in the activation of Cdk2. HCMV causes a substantial increase in the abundance of cyclin E and stimulates translocation of Cdk2 from the cytoplasm to the nucleus. Further, the abundance of the Cdk inhibitors (CKIs) p21cip1/waf1(p21cip1) and p27kip1 is substantially reduced. The activity of cyclin E/Cdk2 increases as levels of CKIs, particularly p21cip1, fall. We have previously shown that these phenomena contribute to priming the cell for efficient replication of HCMV. In this study, the mechanisms responsible for the decrease in p21cip1 levels after HCMV infection were investigated by measuring p21cip1 RNA and protein levels in permissive human lung (LU) fibroblasts after HCMV infection. Northern blot analysis revealed that p21cip1 RNA levels increased briefly at 3 h after HCMV infection and then decreased to their nadir at 24 h; thereafter, RNA levels increased to about 60% of the preinfection level. Western blot analysis demonstrated that the relative abundance of p21cip1 protein roughly paralleled the observed changes in initial RNA levels; however, the final levels of protein were much lower than preinfection levels. After a transient increase at 3 h postinfection, p21cip1 abundance declined sharply over the next 24 h and remained at a very low level through 96 h postinfection. The disparity between p21cip1 RNA and protein levels suggested that the degradation of p21cip1 might be affected in HCMV-infected cells. Treatment of HCMV-infected cells with MG132, an inhibitor of proteasome-mediated proteolysis, provided substantial protection of p21cip1 in mock-infected cells, but MG132 was much less effective in protecting p21cip1 in HCMV-infected cells. The addition of E64d or Z-Leu-Leu-H, each an inhibitor of calpain activity, to HCMV-infected cells substantially increased the abundance of p21cip1 in a concentration-dependent manner. To verify that p21cip1 was a substrate for calpain, purified recombinant p21cip1 was incubated with either m-calpain or μ-calpain, which resulted in rapid proteolysis of p21cip1. E64d inhibited the proteolysis of p21cip1 catalyzed by either m-calpain or μ-calpain. Direct measurement of calpain activity in HCMV-infected LU cells indicated that HCMV infection induced a substantial and sustained increase in calpain activity, although there was no change in the abundance of either m- or μ-calpain or the endogenous calpain inhibitor calpastatin. The observed increase of calpain activity was consistent with the increases in intracellular free Ca2+ and phospholipid degradation in HCMV-infected LU cells reported previously from our laboratory. Considered together, these results suggest that the increase in calpain activity observed following HCMV infection contributes significantly to the reduction of p21cip1 levels and the resultant cell cycle progression.


2018 ◽  
Vol 18 (4) ◽  
pp. 573-582 ◽  
Author(s):  
Khaled R.A. Abdellatif ◽  
Mostafa M. Elbadawi ◽  
Mohammed T. Elsaady ◽  
Amer A. Abd El-Hafeez ◽  
Takashi Fujimura ◽  
...  

Background: Some 2-thioxoimidazolidinones have been reported as anti-prostate and anti-breast cancer agents through their inhibitory activity on topoisomerase I that is considered as a potential chemotherapeutic target. Objective: A new series of 3,5-disubstituted-2-thioxoimidazolidinone derivatives 10a-f and their S-methyl analogs 11a-f were designed, synthesized and evaluated for cytotoxicity against human prostate cancer cell line (PC-3), human breast cancer cell line (MCF-7) and non-cancerous human lung fibroblast cell line (WI-38). </P><P> Results and Method: While compounds 10a-f showed a broad range of activities against PC-3 and MCF-7 cell lines (IC50 = 34.0 – 186.9 and 24.6 – 147.5 µM respectively), the S-methyl analogs 11a-f showed (IC50 = 22.7 – 198.5 and 16.9 – 188.2 µM respectively) in comparison with 5-fluorouracil (IC50 = 60.7 and 40.7 µM respectively). 11c (IC50 = 22.7 and 29.2 µM) and 11f (IC50 = 28.7 and 16.9 µM) were the most potent among all compounds against both PC-3 and MCF-7 respectively with no cytotoxicity against WI-38. Conclusion: The newly synthesized compounds showed good activity against PC-3 and MCF-7 cell lines in comparison with 5-fluorouracil. Compounds 11c and 11f bound with human topoisomerase I similar to its known inhibitors and significantly inhibited its DNA relaxation activity in a dose dependent manner which may rationalize their molecular mechanism as cytotoxic agents.


2020 ◽  
Vol 15 (5) ◽  
pp. 257-265
Author(s):  
Chanmoly Seng ◽  
Harsh Sharthiya ◽  
Vaibhav Tiwari ◽  
Michele Fornaro

Cytomegalovirus infection cause of severe developmental disorders of the CNS. Aim: In this study, we utilized a differentiated mouse-derived hippocampal cell line (dHT22) to understand mouse CMV (MCMV) infection. Results: The expression of immediate early genes ( IE) 1 and 3 confirmed the time-dependent susceptibility of dHT22 cells to MCMV infection. MCMV infection alters the cellular distribution of heparan sulfate (HS). In addition, pretreatment with heparinase significantly reduces virus infectivity. Conclusion: The compartmentalization of HS in MCMV infected cells suggests multiple roles of HS in virus life cycle ranging from viral entry to viral transport and cellular remodeling. An enzymatic heparinase assay confirmed that HS is critical for viral entry and trafficking.


2006 ◽  
Vol 50 (8) ◽  
pp. 2806-2813 ◽  
Author(s):  
T. Ueno ◽  
Y. Eizuru ◽  
H. Katano ◽  
T. Kurata ◽  
T. Sata ◽  
...  

ABSTRACT Promyelocytic leukemia (PML) bodies are discrete nuclear foci that are intimately associated with many DNA viruses. In human cytomegalovirus (HCMV) infection, the IE1 (for “immediate-early 1”) protein has a marked effect on PML bodies via de-SUMOylation of PML protein. Here, we report a novel real-time monitoring system for HCMV-infected cells using a newly established cell line (SE/15) that stably expresses green fluorescent protein (GFP)-PML protein. In SE/15 cells, HCMV infection causes specific and efficient dispersion of GFP-PML bodies in an IE1-dependent manner, allowing the infected cells to be monitored by fluorescence microscopy without immunostaining. Since a specific change in the detergent solubility of GFP-PML occurs upon infection, the infected cells can be quantified by GFP fluorescence measurement after extraction. With this assay, the inhibitory effects of heparin and neutralizing antibodies were determined in small-scale cultures, indicating its usefulness for screening inhibitory reagents for laboratory virus strains. Furthermore, we established a sensitive imaging assay by counting the number of nuclei containing dispersed GFP-PML, which is applicable for titration of slow-growing clinical isolates. In all strains tested, the virus titers estimated by the GFP-PML imaging assay were well correlated with the plaque-forming cell numbers determined in human embryonic lung cells. Coculture of SE/15 cells and HCMV-infected fibroblasts permitted a rapid and reliable method for estimating the 50% inhibitory concentration values of drugs for clinical isolates in susceptibility testing. Taken together, these results demonstrate the development of a rapid, sensitive, quantitative, and specific detection system for HCMV-infected cells involving a simple procedure that can be used for titration of low-titer clinical isolates.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jorge A. Arias-del-Angel ◽  
Jesús Santana-Solano ◽  
Moisés Santillán ◽  
Rebeca G. Manning-Cela

Abstract Numerous works have demonstrated that trypanosomatid motility is relevant for parasite replication and sensitivity. Nonetheless, although some findings indirectly suggest that motility also plays an important role during infection, this has not been extensively investigated. This work is aimed at partially filling this void for the case of Trypanosoma cruzi. After recording swimming T. cruzi trypomastigotes (CL Brener strain) and recovering their individual trajectories, we statistically analyzed parasite motility patterns. We did this with parasites that swim alone or above monolayer cultures of different cell lines. Our results indicate that T. cruzi trypomastigotes change their motility patterns when they are in the presence of mammalian cells, in a cell-line dependent manner. We further performed infection experiments in which each of the mammalian cell cultures were incubated for 2 h together with trypomastigotes, and measured the corresponding invasion efficiency. Not only this parameter varied from cell line to cell line, but it resulted to be positively correlated with the corresponding intensity of the motility pattern changes. Together, these results suggest that T. cruzi trypomastigotes are capable of sensing the presence of mammalian cells and of changing their motility patterns accordingly, and that this might increase their invasion efficiency.


2001 ◽  
Vol 75 (8) ◽  
pp. 3859-3872 ◽  
Author(s):  
Jin-Hyun Ahn ◽  
Yixun Xu ◽  
Won-Jong Jang ◽  
Michael J. Matunis ◽  
Gary S. Hayward

ABSTRACT The human cytomegalovirus (HCMV) major immediate-early protein IE2 is a nuclear phosphoprotein that is believed to be a key regulator in both lytic and latent infections. Using yeast two-hybrid screening, small ubiquitin-like modifiers (SUMO-1, SUMO-2, and SUMO-3) and a SUMO-conjugating enzyme (Ubc9) were isolated as IE2-interacting proteins. In vitro binding assays with glutathioneS-transferase (GST) fusion proteins provided evidence for direct protein-protein interaction. Mapping data showed that the C-terminal end of SUMO-1 is critical for interaction with IE2 in both yeast and in vitro binding assays. IE2 was efficiently modified by SUMO-1 or SUMO-2 in cotransfected cells and in cells infected with a recombinant adenovirus expressing HCMV IE2, although the level of modification was much lower in HCMV-infected cells. Two lysine residues at positions 175 and 180 were mapped as major alternative SUMO-1 conjugation sites in both cotransfected cells and an in vitro sumoylation assay and could be conjugated by SUMO-1 simultaneously. Although mutations of these lysine residues did not interfere with the POD (or ND10) targeting of IE2, overexpression of SUMO-1 enhanced IE2-mediated transactivation in a promoter-dependent manner in reporter assays. Interestingly, many other cellular proteins identified as IE2 interaction partners in yeast two-hybrid assays also interact with SUMO-1, suggesting that either directly bound or covalently conjugated SUMO moieties may act as a bridge for interactions between IE2 and other SUMO-1-modified or SUMO-1-interacting proteins. When we investigated the intracellular localization of SUMO-1 in HCMV-infected cells, the pattern changed from nuclear punctate to predominantly nuclear diffuse in an IE1-dependent manner at very early times after infection, but with some SUMO-1 protein now associated with IE2 punctate domains. However, at late times after infection, SUMO-1 was predominantly detected within viral DNA replication compartments containing IE2. Taken together, these results show that HCMV infection causes the redistribution of SUMO-1 and that IE2 both physically binds to and is covalently modified by SUMO moieties, suggesting possible modulation of both the function of SUMO-1 and protein-protein interactions of IE2 during HCMV infection.


2003 ◽  
Vol 77 (14) ◽  
pp. 8147-8152 ◽  
Author(s):  
Naoki Inoue ◽  
Jörn Winter ◽  
Renu B. Lal ◽  
Margaret K. Offermann ◽  
Shin Koyano

ABSTRACT To analyze the mechanisms of entry of human herpesvirus 8 (HHV-8), we established a reporter cell line T1H6 that contains the lacZ gene under the control of the polyadenylated nuclear RNA promoter, known to be strongly activated by a viral transactivator, Rta. We found that infection with cell-free virus, as well as cocultivation with HHV-8-positive primary effusion lymphoma cell lines, activated the lacZ gene of T1H6 in a sensitive and dose-dependent manner. Addition of Polybrene and centrifugation enhanced, but polysulfonate compounds inhibited, the HHV-8 infectivity. RGD-motif-containing polypeptides and integrins did not decrease the infectivity, suggesting the presence of an additional cellular receptor other than the reported one. The entry was dependent on pH acidification but not on the clathrin pathway. Although conditioned media obtained from human immunodeficiency virus (HIV)-infected cells did not have any effect on the early steps of HHV-8 infection, intracellular expression of a proviral HIV type 1, but not of Tat alone, increased the HHV-8-dependent reporter activation slightly, suggesting a potential of HIV-mediated enhancement of an early step of HHV-8 infection.


2010 ◽  
Vol 84 (12) ◽  
pp. 6060-6069 ◽  
Author(s):  
Run-Xuan Shao ◽  
Leiliang Zhang ◽  
Lee F. Peng ◽  
Eileen Sun ◽  
Woo Jin Chung ◽  
...  

ABSTRACT We and others have observed that hepatic levels of suppressor of cytokine signaling 3 (SOCS3) are significantly higher in persons with chronic hepatitis C, particularly those who are nonresponders to interferon (IFN) treatment, than in healthy individuals. However, the relationship between SOCS3 and hepatitis C virus (HCV) replication remains unclear. Given its putative role, we hypothesized that SOCS3 is permissive for viral replication. We therefore used the OR6 cell line, which harbors a genotype 1b full-length HCV replicon, and the genotype 2a full-length HCV strain JFH1 infection system to analyze the effects of SOCS3 overexpression and short hairpin RNA (shRNA)-mediated knockdown on HCV replication. We further analyzed the role of mTOR in the effects of SOCS3 by treating selected cells with rapamycin. OR6 cells and JFH1-infected Huh7.5.1 cells expressed significantly less SOCS3 than control cells. Furthermore, inhibition of HCV replication with the HCV protease inhibitor BILN 2061 restored SOCS3 protein levels. SOCS3 overexpression in OR6 cells and JFH1-infected Huh7.5.1 cells resulted in significantly lower HCV replication than that in the control cells, despite SOCS3-related inhibition of STAT1 phosphorylation and type I IFN signaling. In contrast, JFH1-infected cells with stable SOCS3 knockdown expressed higher levels of HCV proteins and RNA than did control cells. SOCS3-targeting shRNA also knocked down mTOR and phospho-mTOR. The mTOR inhibitor rapamycin reversed the inhibitory effects of SOCS3. In independent investigations, SOCS3 unexpectedly suppressed HCV replication in an mTOR-dependent manner. These findings suggest that increased SOCS3 levels consistently observed in chronic IFN nonresponders may reflect a compensatory host antiviral response to persistent infection and that manipulation of SOCS3/mTOR may offer benefit against HCV infection.


2001 ◽  
pp. 611-618 ◽  
Author(s):  
M Tonacchera ◽  
P Agretti ◽  
G Ceccarini ◽  
R Lenza ◽  
S Refetoff ◽  
...  

OBJECTIVE: The human sodium iodide symporter (hNIS) is a candidate autoantigen in autoimmune thyroid diseases. To investigate the possible existence of autoantibodies able to interfere with the biological activity of hNIS, an assay was developed using a cell line stably expressing hNIS. METHODS: hNIS complementary cDNA cloned in pcDNA3 and a neomycin resistance gene vector were co-transfected into CHO cells. After selection with geneticin, a cell line termed PA4, showing the highest level of Na(125)I uptake, was characterized. The time course of iodide uptake was evaluated by incubating PA(4) cells with 10 micromol/l NaI and 0.1 microCi Na(125)I for a period up to 90 min. The accumulation of iodide increased linearly between 2 and 10 min, reaching a plateau at 45 min. The curve of iodide efflux mirrored that of iodide influx. Both perchlorate and thiocyanate inhibited iodide uptake in PA(4) cells in a dose-dependent manner starting from concentrations as low as 0.01 and 0.1 micromol/l respectively and complete inhibition was obtained at concentrations of 100 micromol/l perchlorate and 1000 micromol/l thiocyanate. The sensitivity of the inhibition assay was further improved using both inhibitors after 5 min incubation and in the absence of cold NaI. RESULTS: Included in the study were 42 patients with Graves' disease (25 had active hyperthyroidism, ten were euthyroid and seven had hypothyroidism); 34 patients with Hashimoto's thyroiditis (one was euthyroid, four had subclinical hypothyroidism and 29 were overtly hypothyroid); and 19 with atrophic thyroiditis (all hypothyroid). Four out of eight whole sera from patients with Hashimoto's thyroiditis, and 8 out of 25 whole sera from patients with Graves' disease caused an inhibition of iodide uptake in PA(4) cells greater than 20% but also in 4 out of 15 sera from normal subjects. This inhibition activity exerted by sera from patients and controls was lost after dialyzing against buffer. Accordingly, IgGs purified from sera of all patients with Graves' disease and with Hashimoto's thyroiditis or atrophic thyroiditis were devoid of any effect on iodide uptake. CONCLUSIONS: In conclusion, we believe that autoantibodies able to block the function of hNIS are very rare.


Sign in / Sign up

Export Citation Format

Share Document