scholarly journals Reduction of Streptococcus mutans Adherence and Dental Biofilm Formation by Surface Treatment with Phosphorylated Polyethylene Glycol

2007 ◽  
Vol 51 (10) ◽  
pp. 3634-3641 ◽  
Author(s):  
Akira Shimotoyodome ◽  
Takashi Koudate ◽  
Hisataka Kobayashi ◽  
Junji Nakamura ◽  
Ichiro Tokimitsu ◽  
...  

ABSTRACT Initial attachment of the cariogenic Streptococcus mutans onto dental enamel is largely promoted by the adsorption of specific salivary proteins on enamel surface. Some phosphorylated salivary proteins were found to reduce S. mutans adhesion by competitively inhibiting the adsorption of S. mutans-binding salivary glycoproteins to hydroxyapatite (HA). The aim of this study was to develop antiadherence compounds for preventing dental biofilm development. We synthesized phosphorylated polyethylene glycol (PEG) derivatives and examined the possibility of surface pretreatment with them for preventing S. mutans adhesion in vitro and dental biofilm formation in vivo. Pretreatment of the HA surface with methacryloyloxydecyl phosphate (MDP)-PEG prior to saliva incubation hydrophilized the surface and thereby reduced salivary protein adsorption and saliva-promoted bacterial attachment to HA. However, when MDP-PEG was added to the saliva-pretreated HA (S-HA) surface, its inhibitory effect on bacterial binding was completely diminished. S. mutans adhesion onto S-HA was successfully reduced by treatment of the surface with pyrophosphate (PP), which desorbs salivary components from S-HA. Treatment of S-HA surfaces with MDP-PEG plus PP completely inhibited saliva-promoted S. mutans adhesion even when followed by additional saliva treatment. Finally, mouthwash with MDP-PEG plus PP prevented de novo biofilm development after thorough teeth cleaning in humans compared to either water or PP alone. We conclude that MDP-PEG plus PP has the potential for use as an antiadherence agent that prevents dental biofilm development.

2015 ◽  
Vol 22 (2) ◽  
pp. 85-92
Author(s):  
Povilas Kalesinskas ◽  
Tomas Kačergius ◽  
Arvydas Ambrozaitis ◽  
Ryo Jimbo ◽  
Dan Ericson

Background. Biofilm formation by Streptococcus mutans bacteria on teeth leads to dental caries, which still remains one of the most prevalent human diseases strongly related to increase of dietary sucrose consumption in modern society. In the biofilm, sucrose is metabolized by S. mutans to acids causing tooth decay. S. mutans also produces glucosyltransferases (Gtfs) for synthesis of sticky glucan polymers from sucrose that provides matrix for biofilm formation on teeth. For reducing biofilm build-up, one preventive measure could be blocking of Gtf synthesis. The aim of this study was to test antisense phosphorothioate oligodeoxyribonucleotide (PS-ODN) targeting simultaneously S. mutans gtfB and gtfC mRNAs in order to inhibit biofilm formation in vitro. Materials and methods. S. mutans bacteria were grown anaerobically on glass slides inserted vertically in 24-well cell culture plates containing Todd Hewitt broth with sucrose under exposure to antisense or missense PS-ODNs at the final concentration of 10 μM. Untreated bacteria served as controls. After 24 h of incubation, glass slides were removed, air-dried and further used for the quantitative evaluation of the streptococci biofilm applying an optical profilometry technique. Results. It was revealed that antisense PS-ODN considerably reduced the most critical biofilm surface roughness parameter Sa (average difference between the peak hight and valleys) inhibiting the biofilm development by 46% and 77% in comparison to untreated (p = 0.06) and missense PS-ODN-treated bacteria (p < 0.05), respectively. Conclusions. The results demonstrate that antisense PS-ODN considerably decreases streptococci-induced biofilm development on glass slides, and might therefore significantly suppress dental biofilm formation through simultaneous inactivation of S. mutans gtfB and gtfC mRNAs.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Fatemeh Ostadhossein ◽  
Parikshit Moitra ◽  
Esra Altun ◽  
Debapriya Dutta ◽  
Dinabandhu Sar ◽  
...  

AbstractDental plaques are biofilms that cause dental caries by demineralization with acidogenic bacteria. These bacteria reside inside a protective sheath which makes any curative treatment challenging. We propose an antibiotic-free strategy to disrupt the biofilm by engineered clustered carbon dot nanoparticles that function in the acidic environment of the biofilms. In vitro and ex vivo studies on the mature biofilms of Streptococcus mutans revealed >90% biofilm inhibition associated with the contact-mediated interaction of nanoparticles with the bacterial membrane, excessive reactive oxygen species generation, and DNA fragmentation. An in vivo examination showed that these nanoparticles could effectively suppress the growth of S. mutans. Importantly, 16S rRNA analysis of the dental microbiota showed that the diversity and richness of bacterial species did not substantially change with nanoparticle treatment. Overall, this study presents a safe and effective approach to decrease the dental biofilm formation without disrupting the ecological balance of the oral cavity.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Zahra Farshadzadeh ◽  
Maryam Pourhajibagher ◽  
Behrouz Taheri ◽  
Alireza Ekrami ◽  
Mohammad Hossein Modarressi ◽  
...  

Abstract Background The global emergence of Acinetobacter baumannii resistance to most conventional antibiotics presents a major therapeutic challenge and necessitates the discovery of new antibacterial agents. The purpose of this study was to investigate in vitro and in vivo anti-biofilm potency of dermcidin-1L (DCD-1L) against extensively drug-resistant (XDR)-, pandrug-resistant (PDR)-, and ATCC19606-A. baumannii. Methods After determination of minimum inhibitory concentration (MIC) of DCD-1L, in vitro anti-adhesive and anti-biofilm activities of DCD-1L were evaluated. Cytotoxicity, hemolytic activity, and the effect of DCD-1L treatment on the expression of various biofilm-associated genes were determined. The inhibitory effect of DCD-1L on biofilm formation in the model of catheter-associated infection, as well as, histopathological examination of the burn wound sites of mice treated with DCD-1L were assessed. Results The bacterial adhesion and biofilm formation in all A. baumannii isolates were inhibited at 2 × , 4 × , and 8 × MIC of DCD-1L, while only 8 × MIC of DCD-1L was able to destroy the pre-formed biofilm in vitro. Also, reduce the expression of genes involved in biofilm formation was observed following DCD-1L treatment. DCD-1L without cytotoxic and hemolytic activities significantly reduced the biofilm formation in the model of catheter-associated infection. In vivo results showed that the count of A. baumannii in infected wounds was significantly decreased and the promotion in wound healing by the acceleration of skin re-epithelialization in mice was observed following treatment with 8 × MIC of DCD-1L. Conclusions Results of this study demonstrated that DCD-1L can inhibit bacterial attachment and biofilm formation and prevent the onset of infection. Taking these properties together, DCD-1L appears as a promising candidate for antimicrobial and anti-biofilm drug development.


2009 ◽  
Vol 75 (22) ◽  
pp. 7037-7043 ◽  
Author(s):  
Min Zhu ◽  
Dragana Ajdić ◽  
Yuan Liu ◽  
David Lynch ◽  
Justin Merritt ◽  
...  

ABSTRACT Dextran-dependent aggregation (DDAG) of Streptococcus mutans is an in vitro phenomenon that is believed to represent a property of the organism that is beneficial for sucrose-dependent biofilm development. GbpC, a cell surface glucan-binding protein, is responsible for DDAG in S. mutans when cultured under defined stressful conditions. Recent reports have described a putative transcriptional regulator gene, irvA, located just upstream of gbpC, that is normally repressed by the product of an adjacent gene, irvR. When repression of irvA is relieved, there is a resulting increase in the expression of GbpC and decreases in competence and synthesis of the antibiotic mutacin I. This study examined the role of irvA in DDAG and biofilm formation by engineering strains that overexpressed irvA (IrvA+) on an extrachromosomal plasmid. The IrvA+ strain displayed large aggregation particles that did not require stressful growth conditions. A novel finding was that overexpression of irvA in a gbpC mutant background retained a measure of DDAG, albeit very small aggregation particles. Biofilms formed by the IrvA+ strain in the parental background possessed larger-than-normal microcolonies. In a gbpC mutant background, the overexpression of irvA reversed the fragile biofilm phenotype normally associated with loss of GbpC. Real-time PCR and Northern blot analyses found that expression of gbpC did not change significantly in the IrvA+ strain but expression of spaP, encoding the major surface adhesin P1, increased significantly. Inactivation of spaP eliminated the small-particle DDAG. The results suggest that IrvA promotes DDAG not only by GbpC, but also via an increase in P1.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Nagat Areid ◽  
Eva Söderling ◽  
Johanna Tanner ◽  
Ilkka Kangasniemi ◽  
Timo O. Närhi

Purpose. To explore earlyS. mutansbiofilm formation on hydrothermally induced nanoporous TiO2surfacesin vivoand to examine the effect of UV light activation on the biofilm development.Materials and Methods. Ti-6Al-4V titanium alloy discs (n = 40) were divided into four groups with different surface treatments: noncoated titanium alloy (NC); UV treated noncoated titanium alloy (UVNC); hydrothermally induced TiO2coating (HT); and UV treated titanium alloy with hydrothermally induced TiO2coating (UVHT).In vivoplaque formation was studied in 10 healthy, nonsmoking adult volunteers. Titanium discs were randomly distributed among the maxillary first and second molars. UV treatment was administered for 60 min immediately before attaching the discs in subjects’ molars. Plaque samples were collected 24h after the attachment of the specimens. Mutans streptococci (MS), non-mutans streptococci, and total facultative bacteria were cultured, and colonies were counted.Results. The plaque samples of NC (NC + UVNC) surfaces showed over 2 times more oftenS. mutanswhen compared to TiO2surfaces (HT + UVHT), with the number of colonized surfaces equal to 7 and 3, respectively.Conclusion. Thisin vivostudy suggested that HT TiO2surfaces, which we earlier showed to improve blood coagulation and encourage human gingival fibroblast attachmentin vitro, do not enhance salivary microbial (mostly mutans streptococci) adhesion and initial biofilm formation when compared with noncoated titanium alloy. UV light treatment provided Ti-6Al-4V surfaces with antibacterial properties and showed a trend towards less biofilm formation when compared with non-UV treated titanium surfaces.


2014 ◽  
Vol 82 (5) ◽  
pp. 1968-1981 ◽  
Author(s):  
Megan L. Falsetta ◽  
Marlise I. Klein ◽  
Punsiri M. Colonne ◽  
Kathleen Scott-Anne ◽  
Stacy Gregoire ◽  
...  

ABSTRACTStreptococcus mutansis often cited as the main bacterial pathogen in dental caries, particularly in early-childhood caries (ECC).S. mutansmay not act alone;Candida albicanscells are frequently detected along with heavy infection byS. mutansin plaque biofilms from ECC-affected children. It remains to be elucidated whether this association is involved in the enhancement of biofilm virulence. We showed that the ability of these organisms together to form biofilms is enhancedin vitroandin vivo. The presence ofC. albicansaugments the production of exopolysaccharides (EPS), such that cospecies biofilms accrue more biomass and harbor more viableS. mutanscells than single-species biofilms. The resulting 3-dimensional biofilm architecture displays sizeableS. mutansmicrocolonies surrounded by fungal cells, which are enmeshed in a dense EPS-rich matrix. Using a rodent model, we explored the implications of this cross-kingdom interaction for the pathogenesis of dental caries. Coinfected animals displayed higher levels of infection and microbial carriage within plaque biofilms than animals infected with either species alone. Furthermore, coinfection synergistically enhanced biofilm virulence, leading to aggressive onset of the disease with rampant carious lesions. Ourin vitrodata also revealed that glucosyltransferase-derived EPS is a key mediator of cospecies biofilm development and that coexistence withC. albicansinduces the expression of virulence genes inS. mutans(e.g.,gtfB,fabM). We also found thatCandida-derived β1,3-glucans contribute to the EPS matrix structure, while fungal mannan and β-glucan provide sites for GtfB binding and activity. Altogether, we demonstrate a novel mutualistic bacterium-fungus relationship that occurs at a clinically relevant site to amplify the severity of a ubiquitous infectious disease.


2018 ◽  
Author(s):  
Surya D. Aggarwal ◽  
Rory Eutsey ◽  
Jacob West-Roberts ◽  
Arnau Domenech ◽  
Wenjie Xu ◽  
...  

AbstractStreptococcus pneumoniae (pneumococcus) is an opportunistic pathogen that causes otitis media, sinusitis, pneumonia, meningitis and sepsis. The progression to this pathogenic lifestyle is preceded by asymptomatic colonization of the nasopharynx. This colonization is associated with biofilm formation; the competence pathway influences the structure and stability of biofilms. However, the molecules that link the competence pathway to biofilm formation are unknown. Here, we describe a new competence-induced gene, called briC, and demonstrate that its product promotes biofilm development and stimulates colonization in a murine model. We show that expression of briC is induced by the master regulator of competence, ComE. Whereas briC does not substantially influence early biofilm development on abiotic surfaces, it significantly impacts later stages of biofilm development. Specifically, briC expression leads to increases in biofilm biomass and thickness at 72h. Consistent with the role of biofilms in colonization, briC promotes nasopharyngeal colonization in the murine model. The function of BriC appears to be conserved across pneumococci, as comparative genomics reveal that briC is widespread across isolates. Surprisingly, many isolates, including strains from clinically important PMEN1 and PMEN14 lineages, which are widely associated with colonization, encode a long briC promoter. This long form captures an instance of genomic plasticity and functions as a competence-independent expression enhancer that may serve as a precocious point of entry into this otherwise competence-regulated pathway. Moreover, overexpression of briC by the long promoter fully rescues the comE-deletion induced biofilm defect in vitro, and partially in vivo. These findings indicate that BriC may bypass the influence of competence in biofilm development and that such a pathway may be active in a subset of pneumococcal lineages. In conclusion, BriC is a part of the complex molecular network that connects signaling of the competence pathway to biofilm development and colonization.


mSystems ◽  
2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Iman Chouikha ◽  
Daniel E. Sturdevant ◽  
Clayton Jarrett ◽  
Yi-Cheng Sun ◽  
B. Joseph Hinnebusch

ABSTRACTYersinia pestis, the etiologic agent of plague, emerged as a fleaborne pathogen only within the last 6,000 years. Just five simple genetic changes in theYersinia pseudotuberculosisprogenitor, which served to eliminate toxicity to fleas and to enhance survival and biofilm formation in the flea digestive tract, were key to the transition to the arthropodborne transmission route. To gain a deeper understanding of the genetic basis for the development of a transmissible biofilm infection in the flea foregut, we evaluated additional gene differences and performedin vivotranscriptional profiling ofY. pestis, aY. pseudotuberculosiswild-type strain (unable to form biofilm in the flea foregut), and aY. pseudotuberculosismutant strain (able to produce foregut-blocking biofilm in fleas) recovered from fleas 1 day and 14 days after an infectious blood meal. Surprisingly, theY. pseudotuberculosismutations that increased c-di-GMP levels and enabled biofilm development in the flea did not change the expression levels of thehmsgenes responsible for the synthesis and export of the extracellular polysaccharide matrix required for mature biofilm formation. TheY. pseudotuberculosismutant uniquely expressed much higher levels ofYersiniatype VI secretion system 4 (T6SS-4) in the flea, and this locus was required for flea blockage byY. pseudotuberculosisbut not for blockage byY. pestis. Significant differences between the two species in expression of several metabolism genes, the Psa fimbrial genes, quorum sensing-related genes, transcription regulation genes, and stress response genes were evident during flea infection.IMPORTANCEY. pestisemerged as a highly virulent, arthropod-transmitted pathogen on the basis of relatively few and discrete genetic changes fromY. pseudotuberculosis. Parallel comparisons of thein vitroandin vivotranscriptomes ofY. pestisand twoY. pseudotuberculosisvariants that produce a nontransmissible infection and a transmissible infection of the flea vector, respectively, provided insights into howY. pestishas adapted to life in its flea vector and point to evolutionary changes in the regulation of metabolic and biofilm development pathways in these two closely related species.


2010 ◽  
Vol 76 (24) ◽  
pp. 8160-8173 ◽  
Author(s):  
Shuwen An ◽  
Ji'en Wu ◽  
Lian-Hui Zhang

ABSTRACT Pseudomonas aeruginosa encodes many enzymes that are potentially associated with the synthesis or degradation of the widely conserved second messenger cyclic-di-GMP (c-di-GMP). In this study, we show that mutation of rbdA, which encodes a fusion protein consisting of PAS-PAC-GGDEF-EAL multidomains, results in decreased biofilm dispersal. RbdA contains a highly conserved GGDEF domain and EAL domain, which are involved in the synthesis and degradation of c-di-GMP, respectively. However, in vivo and in vitro analyses show that the full-length RbdA protein only displays phosphodiesterase activity, causing c-di-GMP degradation. Further analysis reveals that the GGDEF domain of RbdA plays a role in activating the phosphodiesterase activity of the EAL domain in the presence of GTP. Moreover, we show that deletion of the PAS domain or substitution of the key residues implicated in sensing low-oxygen stress abrogates the functionality of RbdA. Subsequent study showed that RbdA is involved in positive regulation of bacterial motility and production of rhamnolipids, which are associated with biofilm dispersal, and in negative regulation of production of exopolysaccharides, which are required for biofilm formation. These data indicate that the c-di-GMP-degrading regulatory protein RbdA promotes biofilm dispersal through its two-pronged effects on biofilm development, i.e., downregulating biofilm formation and upregulating production of the factors associated with biofilm dispersal.


2015 ◽  
Vol 60 (1) ◽  
pp. 126-135 ◽  
Author(s):  
Zhi Ren ◽  
Tao Cui ◽  
Jumei Zeng ◽  
Lulu Chen ◽  
Wenling Zhang ◽  
...  

ABSTRACTDental plaque biofilms are responsible for numerous chronic oral infections and cause a severe health burden. Many of these infections cannot be eliminated, as the bacteria in the biofilms are resistant to the host's immune defenses and antibiotics. There is a critical need to develop new strategies to control biofilm-based infections. Biofilm formation inStreptococcus mutansis promoted by major virulence factors known as glucosyltransferases (Gtfs), which synthesize adhesive extracellular polysaccharides (EPS). The current study was designed to identify novel molecules that target Gtfs, thereby inhibitingS. mutansbiofilm formation and having the potential to prevent dental caries. Structure-based virtual screening of approximately 150,000 commercially available compounds against the crystal structure of the glucosyltransferase domain of the GtfC protein fromS. mutansresulted in the identification of a quinoxaline derivative, 2-(4-methoxyphenyl)-N-(3-{[2-(4-methoxyphenyl)ethyl]imino}-1,4-dihydro-2-quinoxalinylidene)ethanamine, as a potential Gtf inhibitor.In vitroassays showed that the compound was capable of inhibiting EPS synthesis and biofilm formation inS. mutansby selectively antagonizing Gtfs instead of by killing the bacteria directly. Moreover, thein vivoanti-caries efficacy of the compound was evaluated in a rat model. We found that the compound significantly reduced the incidence and severity of smooth and sulcal-surface cariesin vivowith a concomitant reduction in the percentage ofS. mutansin the animals' dental plaque (P< 0.05). Taken together, these results represent the first description of a compound that targets Gtfs and that has the capacity to inhibit biofilm formation and the cariogenicity ofS. mutans.


Sign in / Sign up

Export Citation Format

Share Document