scholarly journals Population Pharmacokinetic Modeling of the Association between 63396C→T Pregnane X Receptor Polymorphism and Unboosted Atazanavir Clearance

2010 ◽  
Vol 54 (12) ◽  
pp. 5242-5250 ◽  
Author(s):  
Alessandro Schipani ◽  
Marco Siccardi ◽  
Antonio D'Avolio ◽  
Lorena Baietto ◽  
Marco Simiele ◽  
...  

ABSTRACT Atazanavir (ATV) plasma concentrations are influenced by CYP3A4 and ABCB1, which are regulated by the pregnane X receptor (PXR; NR1I2). PXR expression is correlated with CYP3A4 in liver in the absence of enzyme inducers. The PXR single nucleotide polymorphism (SNP) 63396C→T (rs2472677) alters PXR expression and CYP3A4 activity in vitro, and we previously showed an association of this polymorphism with unboosted ATV plasma concentrations. The aim of this study was to develop a population pharmacokinetic analysis to quantify the impact of 63396C→T and diurnal variation on ATV clearance. A population analysis was performed with 323 plasma samples from 182 randomly selected patients receiving unboosted ATV. Two hundred fifty-nine of the blood samples were collected at random time points, and 11 patients had a full concentration-time profile at steady state. Nonlinear mixed effects modeling was applied to explore the effects of PXR 63396C→T, patient demographics, and diurnal variation. A one-compartment model with first-order absorption and lag time best described the data. Population clearance was 19.7 liters/h with interpatient variability or coefficient of variation (CV) of 21.5%. Homozygosity for the T allele for PXR 63396 was associated with a 17.0% higher clearance that was statistically significant. Evening dosing was associated with 34% higher bioavailability than morning dosing. Patient demographic factors had no effect on ATV clearance. These data show an association of PXR 63396C→T and diurnal variation on unboosted ATV clearance. The association is likely to be mediated through an effect on hepatic PXR expression and therefore expression of its target genes (e.g., CYP3A4, SLCO1B1, and ABCB1), which are known to be involved in ATV clearance.

2019 ◽  
Vol 20 (7) ◽  
pp. 592-600 ◽  
Author(s):  
Zhiqi Wang ◽  
Nan Zhang ◽  
Chaoyang Chen ◽  
Shuqing Chen ◽  
Junyu Xu ◽  
...  

Background: The Pharmacokinetics of Methotrexate (MTX) has been reported to show significant intersubject variability. MTX is metabolized by SHMT1 and transported by OATP1B1 and OATP1B3 both of which show genetic polymorphisms. The non-genetic and genetic factors may influence the pharmacokinetics of MTX. Objective: This study aimed to determine the pharmacokinetic parameters of MTX in Chinese patients and to investigate the effect of various non-genetic factors and genetic variants of OATP1B1, OATP1B3 on MTX’s pharmacokinetics. Method: MTX concentration and clinical characteristics data were collected from 71 rheumatoid arthritis patients. For each patient, SLC19A1, SHMT1, OATP1B1, and OATP1B3 genotyping were tested. Population pharmacokinetic analysis was performed by Nonlinear Mixed-Effect Modeling (NONMEM). MTX pharmacokinetic properties analysis was executed using the one-compartment pharmacokinetic model which incorporated first-order conditional estimation methods with interaction. Besides, the impact of genetic factors and demographic factors on MTX disposition were explored. Results: All the genotypes of steady-state plasma concentrations and OATP1B1 rs4149056, OATP1B1 rs2306283, and OATP1B3 rs7311358 were determined. The detected blood drug concentration reached the standard. Genotypes were all measured. At the same time, the population pharmacokinetic model of methotrexate was obtained CL(L·h-1) =8.25× e0.167× SNP (SNP: SLCO1B1 388A/A=3; SLCO1B1 388A/G=2; SLCO1B1 388G/G=1); V(L)= 32.8; Ka(h- 1)=1.69. Conclusion: : In our study, it was showed that OATP1B1-388 G>A SNP had a significant effect on CL/F. The factor should be considered when determining MTX dosing. However, prospective studies with a large number of participants are needed to validate the results of this study.


2007 ◽  
Vol 25 (13) ◽  
pp. 1772-1778 ◽  
Author(s):  
Georg Hempel ◽  
Doris Oechtering ◽  
Claudia Lanvers-Kaminsky ◽  
Thomas Klingebiel ◽  
Josef Vormoor ◽  
...  

PurposeTo assess the cytotoxicity and the exposure of N,N-dimethylacetamide (DMA) in children during high-dose therapy with an intravenous (IV) formulation of busulfan containing the potentially hepatotoxic and neurotoxic DMA as a solvent.Patients and MethodsEighteen children aged 0.9 to 17.3 years (median age, 4.0 years) received IV busulfan in 15 doses of 0.7 to 1.0 mg/kg busulfan containing overall DMA amounts of between 5 mmol (437 mg) and 70.5 mmol (6,142 mg) per dose. Plasma concentrations of DMA and busulfan were quantified and analyzed using nonlinear mixed-effects modeling. Four different leukemic cell lines were incubated with DMA, and cytotoxicity was assessed in comparison with busulfan as well as in a combination reflecting the ratio in the formulation.ResultsMaximal plasma concentrations of DMA up to 3.09 mmol/L were observed. No accumulation of the solvent occurred. Instead, the trough levels decreased over the 4 treatment days. The population pharmacokinetic analysis revealed a clearance of 86.9 mL h−1kg−1± 27% that increased to 298 mL h−1kg−1on the fourth day and a volume of distribution of 469 mL kg ± 22% (population mean ± interindividual variability). DMA volume of distribution correlated with the volume of distribution of busulfan. The cytotoxicity of DMA in vitro was 3 orders of magnitude lower than that of busulfan. No synergism was observed.ConclusionThe lack of accumulation of DMA confirms that there is no safety concern related to the DMA content in this IV busulfan formulation. The contribution of DMA to the antileukemic effect of the formulation seems to be limited.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 507
Author(s):  
Isabel Gonzalez-Alvarez ◽  
Marival Bermejo ◽  
Yasuhiro Tsume ◽  
Alejandro Ruiz-Picazo ◽  
Marta Gonzalez-Alvarez ◽  
...  

The purpose of this study was to predict in vivo performance of three oral products of Etoricoxib (Arcoxia® as reference and two generic formulations in development) by conducting in vivo predictive dissolution with GIS (Gastro Intestinal Simulator) and computational analysis. Those predictions were compared with the results from previous bioequivalence (BE) human studies. Product dissolution studies were performed using a computer-controlled multicompartmental dissolution device (GIS) equipped with three dissolution chambers, representing stomach, duodenum, and jejunum, with integrated transit times and secretion rates. The measured dissolved amounts were modelled in each compartment with a set of differential equations representing transit, dissolution, and precipitation processes. The observed drug concentration by in vitro dissolution studies were directly convoluted with permeability and disposition parameters from literature to generate the predicted plasma concentrations. The GIS was able to detect the dissolution differences among reference and generic formulations in the gastric chamber where the drug solubility is high (pH 2) while the USP 2 standard dissolution test at pH 2 did not show any difference. Therefore, the current study confirms the importance of multicompartmental dissolution testing for weak bases as observed for other case examples but also the impact of excipients on duodenal and jejunal in vivo behavior.


2020 ◽  
pp. 1902061
Author(s):  
David Macias ◽  
Stephen Moore ◽  
Alexi Crosby ◽  
Mark Southwood ◽  
Xinlin Du ◽  
...  

Pulmonary Arterial Hypertension (PAH) is a destructive disease of the pulmonary vasculature often leading to right heart failure and death. Current therapeutic intervention strategies only slow disease progression. The role of aberrant HIF2α stability and function in the initiation and development of pulmonary hypertension (PH) has been an area of intense interest for nearly two decades.Here we determine the effect of a novel HIF2α inhibitor (PT2567) on PH disease initiation and progression, using two pre-clinical models of PH. Haemodynamic measurements were performed followed by collection of heart, lung and blood for pathological, gene expression and biochemical analysis. Blood outgrowth endothelial cells from IPAH patients were used to determine the impact of HIF2α-inhibition on endothelial function.Global inhibition of HIF2a reduced pulmonary vascular haemodynamics and pulmonary vascular remodelling in both su5416/hypoxia prevention and intervention models. PT2567 intervention reduced the expression of PH associated target genes in both lung and cardiac tissues and restored plasma nitrite concentration. Treatment of monocrotaline exposed rodents with PT2567 reduced the impact on cardiovascular haemodynamics and promoted a survival advantage. In vitro, loss of HIF2α signalling in human pulmonary arterial endothelial cells suppresses target genes associated with inflammation, and PT2567 reduced the hyper-proliferative phenotype and over-active arginase activity in blood outgrowth endothelial cells from IPAH patients. These data suggest that targeting HIF2α hetero-dimerisation with an orally bioavailable compound could offer a new therapeutic approach for PAH. Future studies are required to determine the role of HIF in the heterogeneous PAH population.


1998 ◽  
Vol 16 (6) ◽  
pp. 2150-2156 ◽  
Author(s):  
S Wojtowicz-Praga ◽  
J Torri ◽  
M Johnson ◽  
V Steen ◽  
J Marshall ◽  
...  

PURPOSE This phase I study was performed to evaluate the safety and pharmacokinetics of escalating doses of Marimastat (British Biotech, Inc, Oxford, United Kingdom) in patients with advanced malignancies and to determine the phase II recommended dose to be used in subsequent studies. PATIENTS AND METHODS A standard phase I design was used in this study, in which consecutive groups of three patients were treated with escalating doses of the study drug. Marimastat was administered orally at 25, 50, or 100 mg twice daily to consecutive groups of patients with advanced lung cancer. An additional three patients were added at the highest dose studied (100 mg orally twice daily) to assess whether the inflammatory polyarthitis observed at that dose level can be prevented by a concurrent administration of nonsteroidal antiinflammatory drugs (NSAIDS) and/or low-dose corticosteroids. Blood was drawn for safety monitoring, pharmacokinetic analysis, and plasma levels of metalloproteinase (MMP)-2 and MMP-9 (determined by zymography). A total of 12 patients were studied. RESULTS The most significant toxicity at the highest dose studied (100 mg orally twice daily) was a symptomatic inflammatory polyarthritis that persisted for up to 8 weeks after discontinuation of the study drug and was dose-limiting. The estimated plasma elimination half-life of Marimastat was 4 to 5 hours. The mean maximum concentration (Cmax) at a reasonably well-tolerated dose (50 mg orally twice daily) was 196 ng/mL and was reached within 1 to 2 hours (Tmax) after administration. Areas under the curve (AUC) tended to correlate with the dose of Marimastat. Zymographic analysis of peripheral-blood ratios of activated proenzymatic forms of MMP-2 and -9 did not show any consistent patterns of change in MMP levels or in a degree of their activation during the course of treatment. CONCLUSION Marimastat was well absorbed from the gastrointestinal tract, with high levels of the study drug detected in plasma within hours after drug administration. Plasma concentrations of Marimastat achieved at dose levels 2 and 3 (50 mg and 100 mg orally twice daily) were substantially higher than those required for MMP inhibition in vitro. The dose-limiting toxicity (DLT) was severe inflammatory polyarthritis, which seemed to be a cumulative toxicity.


2019 ◽  
Vol 63 (6) ◽  
Author(s):  
Laura L. Kovanda ◽  
Sean M. Sullivan ◽  
Larry R. Smith ◽  
Amit V. Desai ◽  
Pete L. Bonate ◽  
...  

ABSTRACT VL-2397, a novel, systemic antifungal agent, has potent in vitro and in vivo fungicidal activity against Aspergillus species. Plasma concentrations from a phase 1 study were used to construct a population pharmacokinetic (PPK) model for VL-2397. Healthy subjects aged 18 to 55 years received single doses of VL-2397, ranging from 3 to 1,200 mg, multiple daily doses of 300, 600, or 1,200 mg for 7 days, or 300 mg three times/day for 7 days followed by 600 mg daily for 21 days. Plasma samples were collected throughout the dosing intervals. Sixty-six subjects provided 1,908 concentrations. Drug concentrations over time were increased less than dose proportionally for doses above 30 mg. Dose-normalized concentrations plotted over time did not overlap. A 3-compartment nonlinear saturable binding model fit the data well. Clearance increased with dose, and mean values ranged from 0.4 liters/h at 3 mg to 8.5 liters/h at 1,200 mg. Mean volume in the central compartment ranged from 4.8 to 6.9 liters across doses. In the first 24 h, once-daily dosing results in a rapid decrease in concentrations by hour 16 to approximately 1 mg/liter, regardless of dose, with slow clearance over time. Administration of 300 mg every 8 h achieved concentrations above 1 mg/liter over an entire 24-h period. There was a significant relationship between body surface area and clearance. The data suggest that VL-2397 has nonlinear saturable binding kinetics. Protein binding is the likely primary source of the nonlinearity. The PPK model can now be used to optimize dosing by bridging the kinetics to efficacious pharmacodynamic targets.


2019 ◽  
Vol 63 (4) ◽  
Author(s):  
Jose Francis ◽  
Simbarashe P. Zvada ◽  
Paolo Denti ◽  
Mark Hatherill ◽  
Salome Charalambous ◽  
...  

ABSTRACT Rifapentine is a rifamycin used to treat tuberculosis. As is the case for rifampin, plasma exposures of rifapentine are associated with the treatment response. While concomitant food intake and HIV infection explain part of the pharmacokinetic variability associated with rifapentine, few studies have evaluated the contribution of genetic polymorphisms. We evaluated the effects of functionally significant polymorphisms of the genes encoding OATP1B1, the pregnane X receptor (PXR), constitutive androstane (CAR), and arylacetamide deacetylase (AADAC) on rifapentine exposure. Two studies evaluating novel regimens among southern African patients with drug-susceptible pulmonary tuberculosis were included in this analysis. In the RIFAQUIN study, rifapentine was administered in the continuation phase of antituberculosis treatment in 1,200-mg-once-weekly or 900-mg-twice-weekly doses. In the Daily RPE study, 450 or 600 mg was given daily during the intensive phase of treatment. Nonlinear mixed-effects modeling was used to describe the pharmacokinetics of rifapentine and to identify significant covariates. A total of 1,144 drug concentration measurements from 326 patients were included in the analysis. Pharmacogenetic information was available for 162 patients. A one-compartment model with first-order elimination and transit compartment absorption described the data well. In a typical patient (body weight, 56 kg; fat-free mass, 45 kg), the values of clearance and volume of distribution were 1.33 liters/h and 25 liters, respectively. Patients carrying the AA variant (65.4%) of AADAC rs1803155 were found to have a 10.4% lower clearance. HIV-infected patients had a 21.9% lower bioavailability. Once-weekly doses of 1,200 mg were associated with a reduced clearance (13.2%) compared to that achieved with more frequently administered doses. Bioavailability was 23.3% lower among patients participating in the Daily RPE study than in those participating in the RIFAQUIN study. This is the first study to report the effect of AADAC rs1803155AA on rifapentine clearance. The observed increase in exposure is modest and unlikely to be of clinical relevance. The difference in bioavailability between the two studies is probably related to the differences in food intake concomitant with the dose. HIV-coinfected patients had lower rifapentine exposures.


2011 ◽  
Vol 55 (11) ◽  
pp. 5294-5299 ◽  
Author(s):  
Gautam Baheti ◽  
Jennifer J. Kiser ◽  
Peter L. Havens ◽  
Courtney V. Fletcher

ABSTRACTThe relationships among the dose of tenofovir disoproxil fumarate (TDF), tenofovir (TFV) plasma concentrations, and intracellular TFV diphosphate (TFV-DP) concentrations are poorly understood. Our objective was to characterize TFV and TFV-DP relationships. Data were pooled from two studies in HIV-infected persons (n= 55) on stable antiretroviral therapy. TFV and TFV-DP were measured with validated liquid chromatography/tandem mass spectrometry (LC/MS/MS) methods. Nonlinear mixed effects modeling (NONMEM 7) was used to develop the population model and explore the influence of covariates on TFV. A sequential analysis approach was utilized. A two-compartment model with first-order absorption best described TFV PK (FOCEI). An indirect stimulation of response model best described TFV-DP, where formation of TFV-DP was driven by plasma TFV concentration. Final plasma population estimates were as follows: absorption rate constant, 1.03 h−1; apparent clearance (CL/F), 42 liters/h (33.5% interindividual variability [IIV]); intercompartment clearance, 181 liters/h; apparent central distribution volume (Vc/F), 273 liters (64.8% IIV); and apparent peripheral distribution volume (Vp/F), 440 liters (46.5% IIV). Creatinine clearance was the most significant covariate on CL/F and Vc/F. The correlation between CL/F and Vc/F was 0.553. The indirect response model for TFV-DP resulted in estimates of the maximal intracellular concentration (Emax), the TFV concentration producing 50% ofEmax(EC50), and the intracellular elimination rate constant (kout) of 300 fmol/106cells (82% IIV), 100 ng/ml (106% IIV), and 0.008 h−1, respectively. The estimatedkoutgave an 87-h TFV-DP half-life. A predictive check assessment indicated satisfactory model performance. This model links formation of TFV-DP with plasma TFV concentrations and should facilitate more informed investigations of TFV clinical pharmacology.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4737-4737
Author(s):  
Abul Islam ◽  
Ken-ichiro Otsuyama ◽  
Jakia Amin ◽  
Saeid Abroun ◽  
Karim Shamsasenjan ◽  
...  

Abstract The chemokine, stromal cell-derived factor 1 (SDF-1; CXCL12) and its receptor, CXCR4 are considered to be essentially required for plasma cell homing to the bone marrow (BM). It is well known that plasma cells in the BM (long-lived plasma cells) survive for a long time and have the constitutively high NF-kB activity. Since human myeloma cells are considered to be derived from these committed long-lived plasma cells, we investigated the role of SDF-1 on the survival of primary myeloma cells from myeloma patients and the possible relationship with NF-kB activity. First, we confirmed that all primary myeloma cells expressed CXCR4 but not CCR9 or CCR10 receptors on their surface and the levels of CXCR4 expression apparently correlated with maturity of BM plasma cells; mature myeloma cells (MPC-1+) as well as polyclonal plasma cells expressed higher levels of CXCR4 than those on immature myeloma cells (MPC-1-). The production of SDF-1 was found strongly in BM stromal cells but not in primary myeloma cells as well as myeloma cell lines. On the other hand, high DNA binding activity of NF-kB was constitutively detected in primary myeloma cells as well as myeloma cell lines, and these NF-kB activities significantly correlated with the expression levels of CD54 on their surface, for CD54 gene is one of the strict NF-kB target genes. Based on the expression levels of CD54 protein, interestingly, primary myeloma cells showed weaker NF-kB activities than those in monoclonal plasma cells from MGUS and polyclonal plasma cells from polyclonal gammopathy. Plasma concentrations of SDF-1 were also significantly correlated to the expression levels of CD54 on primary myeloma cells significantly (P<0.01). Furthermore, it was confirmed that addition of SDF-1 significantly increased the expression levels of CD54 in the in vitro culture of primary myeloma cells. Therefore, these results indicate that SDF-1 is responsible for high expression levels of CD54 and possibly the constitutively high NF-kB activity in primary myeloma cells.


Sign in / Sign up

Export Citation Format

Share Document