scholarly journals Tigecycline Therapy Significantly Reduces the Concentrations of Inflammatory Pulmonary Cytokines and Chemokines in a Murine Model of Mycoplasma pneumoniae Pneumonia

2009 ◽  
Vol 53 (4) ◽  
pp. 1546-1551 ◽  
Author(s):  
C. M. Salvatore ◽  
C. Techasaensiri ◽  
C. Tagliabue ◽  
K. Katz ◽  
N. Leos ◽  
...  

ABSTRACT Mycoplasma pneumoniae is one of the causative agents of atypical community-acquired pneumonia. Tigecycline belongs to a new class of glycylcycline antimicrobials that have activity against a wide range of microorganisms, including in vitro activity against M. pneumoniae. We investigated the effect of tigecycline on microbiologic, histologic, and immunologic indices in a murine model of M. pneumoniae pneumonia. BALB/c mice were inoculated intranasally with M. pneumoniae and treated subcutaneously with tigecycline or placebo for 6 days. Outcome variables included quantitative bronchoalveolar lavage (BAL) M. pneumoniae culture, lung histopathologic score (HPS), BAL cytokine and chemokine concentrations (tumor necrosis factor alpha [TNF-α], gamma interferon [IFN-γ], interleukin 1β [IL-1β], IL-2, IL-4, IL-5, IL-6, IL-10, IL-12 [p40/p70], granulocyte-macrophage colony-stimulating factor, MIP-1α, MIG, KC, MCP-1, and IP-10). BAL M. pneumoniae concentrations in mice treated with tigecycline (MpTige) tended to be reduced compared with mice treated with placebo (MpPl); however this did not reach statistical significance. The lung HPS was significantly lower, as well as the parenchymal-pneumonia subscore, in the MpTige mice than in the MpPl mice. MpTige mice had significantly lower BAL cytokine concentrations of IL-1β, IL-12 (p40/p70), IFN-γ, and TNF-α; of the chemokines, MIG, MIP-1α, and IP-10 were statistically lower in MpTige mice. While tigecycline treatment demonstrated a modest microbiologic effect, it significantly improved lung histologic inflammation and reduced pulmonary cytokines and chemokines.

2004 ◽  
Vol 48 (8) ◽  
pp. 2897-2904 ◽  
Author(s):  
Ana María Ríos ◽  
Asunción Mejías ◽  
Susana Chávez-Bueno ◽  
Mónica Fonseca-Aten ◽  
Kathy Katz ◽  
...  

ABSTRACT Mycoplasma pneumoniae is a major etiologic agent of acute lower respiratory infections. We evaluated the antimicrobial and immunologic effects of cethromycin (ABT-773), a ketolide antibiotic, for the treatment of M. pneumoniae pneumonia in a mouse model. Eight-week-old BALB/c mice were inoculated intranasally once with 106 CFU of M. pneumoniae on day 0. Treatment was started 24 h after inoculation. Groups of mice were treated subcutaneously with cethromycin at 25 mg/kg of body weight or with placebo daily until sacrifice. Five to ten mice per group were evaluated at days 1, 4, 7, and 10 after inoculation. Outcome variables included bronchoalveolar lavage (BAL) for M. pneumoniae quantitative culture and cytokine and chemokine concentration determinations by enzyme-linked immunosorbent assay (tumor necrosis factor alpha [TNF-α], gamma interferon [IFN-γ], interleukin-1β [IL-1β], IL-2, IL-4, IL-12, granulocyte-macrophage colony-stimulating factor, IL-8, monocyte chemoattractant protein 1 [MCP-1], and macrophage inflammatory protein 1α [MIP-1α]), histopathologic score of the lungs (HPS), and pulmonary function tests (PFT) using whole-body, unrestrained plethysmography at the baseline and post-methacholine exposure as indicators of airway obstruction (AO) and airway hyperresponsiveness (AHR), respectively. The cethromycin-treated mice had a greater reduction in M. pneumoniae culture titers than placebo-treated mice, reaching statistical significance on days 7 and 10 (P < 0.05). HPS was significantly reduced in cethromycin-treated mice compared with placebo-treated mice on days 4, 7, and 10 (P < 0.05). Cytokine concentrations in BAL samples were reduced in mice that received cethromycin, and the differences were statistically significant for 7 of the 10 cytokines measured (TNF-α, IFN-γ, IL-1β, IL-8, IL-12, MCP-1, and MIP-1α) on day 4 (P < 0.05). PFT values were improved in the cethromycin-treated mice, with AO and AHR significantly reduced on day 4 (P < 0.05). In this mouse model, treatment with cethromycin significantly reduced M. pneumoniae culture titers in BAL samples, cytokine and chemokine concentrations in BAL samples, histologic inflammation in the lungs, and disease severity as defined by AO and AHR.


2007 ◽  
Vol 76 (2) ◽  
pp. 732-738 ◽  
Author(s):  
C. M. Salvatore ◽  
M. Fonseca-Aten ◽  
K. Katz-Gaynor ◽  
A. M. Gomez ◽  
R. D. Hardy

ABSTRACT Mycoplasma pneumoniae is a leading cause of pneumonia and is associated with asthma. Evidence links M. pneumoniae respiratory disease severity with interleukin-12 (IL-12) concentrations in respiratory secretions. We evaluated the effects of IL-12 therapy on microbiologic, inflammatory, and pulmonary function indices of M. pneumoniae pneumonia in mice. BALB/c mice were inoculated with M. pneumoniae or SP4 broth. Mice were treated with intranasal IL-12 or placebo daily for 8 days, starting on day 1 after inoculation. Mice were evaluated at baseline and on days 1, 3, 6, and 8 after therapy. Outcome variables included quantitative bronchoalveolar lavage (BAL) M. pneumoniae culture, lung histopathologic score (HPS), BAL cytokine concentrations determined by enzyme-linked immunosorbent assay (tumor necrosis factor alpha [TNF-α], gamma interferon [IFN-γ], IL-1b, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12, and granulocyte-macrophage colony-stimulating factor), and plethysmography, both before and after methacholine treatment. M. pneumoniae-infected mice treated with IL-12 (MpIL12 mice) were found to have significantly higher BAL M. pneumoniae concentrations than those of M. pneumoniae-infected mice treated with placebo (MpP mice) (P < 0.001). MpIL12 mice had higher BAL concentrations of IL-12, IFN-γ, TNF-α, and IL-6, with differences in IL-12 and IFN-γ concentrations reaching statistical significance (P < 0.001). Airway obstruction was statistically elevated in MpIL12 mice compared to that in MpP mice (P = 0.048), while airway hyperreactivity was also elevated in MpIL12 mice but did not reach statistical significance (P = 0.081). Lung parenchymal pneumonia subscores were significantly higher in MpIL12 mice (P < 0.001), but no difference was found for overall HPS, even though a strong trend was noticed (P = 0.051). Treatment of experimental M. pneumoniae pneumonia with intranasal IL-12 was associated with more severe pulmonary disease and less rapid microbiologic and histological resolution.


2005 ◽  
Vol 49 (10) ◽  
pp. 4128-4136 ◽  
Author(s):  
Monica Fonseca-Aten ◽  
Christine M. Salvatore ◽  
Asunción Mejías ◽  
Ana M. Ríos ◽  
Susana Chávez-Bueno ◽  
...  

ABSTRACT Mycoplasma pneumoniae is a major cause of community-acquired pneumonia. We evaluated the efficacy of LBM415, a novel peptide deformylase inhibitor antimicrobial agent, for the treatment of M. pneumoniae pneumonia in a mouse model. Eight-week-old BALB/c mice were intranasally inoculated once with 107 CFU of M. pneumoniae. Groups of mice were treated with LBM415 (50 mg/kg of body weight) or placebo subcutaneously daily for 13 days, starting 24 h after inoculation. Groups of mice were evaluated at the baseline; at days of treatment 1, 3, 6, and 13; and at 7 days after treatment. The MIC of LBM415 against M. pneumoniae was <0.005 μg/ml. LBM415-treated mice had significantly lower bronchoalveolar lavage fluid M. pneumoniae concentrations than placebo-treated mice on days 6 and 13 of treatment. Compared with placebo treatment, therapy with LBM415 significantly decreased lung histopathology scores at days 3, 6, and 13 of treatment and at 7 days after treatment. Airway obstruction was significantly lower in LBM415-treated mice than in placebo-treated mice on days 1, 3, and 6 of treatment and after 7 days of therapy, while airway hyperresponsiveness was significantly lower only on day 3 of therapy. The bronchoalveolar lavage fluid concentrations of tumor necrosis factor alpha, gamma interferon (IFN-γ), interleukin-6 (IL-6), IL-12, KC (functional IL-8), monocyte chemotactic protein 1, macrophage inflammatory protein 1α, monokine induced by IFN-γ, and IFN-inducible protein 10 were significantly reduced in LBM415-treated mice compared with the levels in placebo-treated mice. There were no differences in the bronchoalveolar lavage fluid concentrations of granulocyte-macrophage colony-stimulating factor, IL-1β, IL-2, IL-4, IL-5, and IL-10 between the two groups of mice. LBM415 therapy had beneficial microbiologic, histologic, respiratory, and immunologic effects on acute murine M. pneumoniae pneumonia.


2007 ◽  
Vol 76 (1) ◽  
pp. 270-277 ◽  
Author(s):  
Takashi Shimizu ◽  
Yutaka Kida ◽  
Koichi Kuwano

ABSTRACT The pathogenesis of Mycoplasma pneumoniae infection is considered to be in part attributable to excessive immune responses. In this study, we investigated whether synthetic lipopeptides of subunit b of F0F1-type ATPase (F0F1-ATPase), NF-κB-activating lipoprotein 1 (N-ALP1), and N-ALP2 (named FAM20, sN-ALP1, and sN-ALP2, respectively) derived from M. pneumoniae induce cytokine and chemokine production and leukocyte infiltration in vivo. Intranasal administration of FAM20 and sN-ALP2 induced infiltration of leukocyte cells and production of chemokines and cytokines in bronchoalveolar lavage fluid, but sN-ALP1 failed to do so. The activity of FAM20 was notably higher than that of sN-ALP2. FAM20 and sN-ALP2 induced tumor necrosis factor alpha (TNF-α) through Toll-like receptor 2 in mouse peritoneal macrophages. Moreover, in the range of low concentrations of lipopeptides, FAM20 showed relatively high activity of inducing TNF-α in mouse peritoneal macrophages compared to synthetic lipopeptides such as MALP-2 and FSL-1, derived from Mycoplasma fermentans and Mycoplasma salivarium, respectively. These findings indicate that the F0F1-ATPase might be a key molecule in inducing cytokines and chemokines contributing to inflammatory responses during M. pneumoniae infection in vivo.


2006 ◽  
Vol 75 (1) ◽  
pp. 236-242 ◽  
Author(s):  
C. M. Salvatore ◽  
M. Fonseca-Aten ◽  
K. Katz-Gaynor ◽  
A. M. Gomez ◽  
A. Mejias ◽  
...  

ABSTRACT Mycoplasma pneumoniae is a leading cause of pneumonia and is associated with asthma. Evidence links M. pneumoniae respiratory disease severity with interleukin-12 (IL-12) concentration in respiratory secretions. We evaluated the microbiologic, inflammatory, and pulmonary function indices of M. pneumoniae pneumonia in IL-12 (p35) knockout (KO) mice and wild-type (WT) mice to determine the role of IL-12 in M. pneumoniae respiratory disease. Eight-week-old wild-type BALB/c mice and 8-week-old IL-12 (p35) KO BALB/c mice were inoculated once intranasally with 107 CFU of M. pneumoniae. Mice were evaluated at days 2, 4, and 7 after inoculation. Outcome variables included quantitative bronchoalveolar lavage (BAL) M. pneumoniae culture, lung histopathologic scores (HPS), BAL cytokine concentrations determined by enzyme-linked immunosorbent assay (tumor necrosis factor alpha [TNF-α], gamma interferon [IFN-γ], IL-1β, IL-2, IL-4, IL-5, IL-6, IL-10, and granulocyte-macrophage colony-stimulating factor) and plethysmography, before and after methacholine, to assess airway obstruction (AO) and airway hyperreactivity (AHR). IL-12 (p35) KO mice infected with M. pneumoniae were found to have significantly lower BAL M. pneumoniae concentrations compared with M. pneumoniae-infected WT mice. Lung HPS and the parenchymal pneumonia subscores (neutrophilic alveolar infiltrate), as well as AO, were significantly lower in infected KO mice. No difference was found for AHR. Infected KO mice had significantly lower BAL concentrations of IFN-γ than WT mice; a trend toward lower BAL concentrations was observed for IL-10 (P = 0.065) and TNF-α (P = 0.078). No differences were found for IL-1β, IL-2, IL-4, IL-5, or IL-6. The lack of IL-12 in experimental M. pneumoniae pneumonia was associated with less severe pulmonary disease and more rapid microbiologic and histologic resolution.


2003 ◽  
Vol 10 (5) ◽  
pp. 960-966 ◽  
Author(s):  
W. R. Waters ◽  
M. V. Palmer ◽  
D. L. Whipple ◽  
M. P. Carlson ◽  
B. J. Nonnecke

ABSTRACT Bovine tuberculosis in the United States has proven costly to cattle producers as well as to government regulatory agencies. While in vivo responsiveness to mycobacterial antigens is the current standard for the diagnosis of tuberculosis, in vitro assays are gaining acceptance, especially as ancillary or complementary tests. To evaluate in vitro indices of cellular sensitization, antigen-induced gamma interferon (IFN-γ), nitric oxide (NO), and tumor necrosis factor alpha (TNF-α) responses by blood mononuclear cells from Mycobacterium bovis-infected cattle were quantified and compared. Using an aerosol model of infection, two doses of each of two strains of M. bovis (95-1315 and HC-2045T) were used to induce a range of IFN-γ, NO, and TNF-α responses. Infection-specific increases in NO, but not in IFN-γ or TNF-α, were detected in nonstimulated cultures at 48 h, a finding that is indicative of nonspecific activation and spontaneous release of NO. The infective dose of M. bovis organisms also influenced responses. At 34 days postinfection, IFN-γ, NO, and TNF-α responses in antigen-stimulated cells from cattle receiving 105 CFU of M. bovis organisms were greater than responses of cells from cattle infected with 103 CFU of M. bovis organisms. The NO response, but not the IFN-γ and TNF-α responses, was influenced by infective strains of M. bovis. The TNF-α, NO, and IFN-γ responses followed similar kinetics, with strong positive associations among the three readouts. Overall, these findings indicate that NO and TNF-α, like IFN-γ, may prove useful as indices for the diagnosis of bovine tuberculosis.


2000 ◽  
Vol 68 (12) ◽  
pp. 6917-6923 ◽  
Author(s):  
José A. Lapinet ◽  
Patrizia Scapini ◽  
Federica Calzetti ◽  
Oliver Pérez ◽  
Marco A. Cassatella

ABSTRACT Accumulation of polymorphonuclear neutrophils (PMN) into the subarachnoidal space is one of the hallmarks of Neisseria meningitidis infection. In this study, we evaluated the ability of outer membrane vesicles (OMV) from N. meningitidis B to stimulate cytokine production by neutrophils. We found that PMN stimulated in vitro by OMV produce proinflammatory cytokines and chemokines including tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), IL-8, macrophage inflammatory protein 1α (MIP-1α), and MIP-1β. A considerable induction of gamma interferon (IFN-γ)-inducible protein 10 (IP-10) mRNA transcripts, as well as extracellular IP-10 release, was also observed when neutrophils were stimulated by OMV in combination with IFN-γ. Furthermore, PMN stimulated by OMV in the presence of IFN-γ demonstrated an enhanced capacity to release TNF-α, IL-1β, IL-8, and MIP-1β compared to stimulation with OMV alone. In line with its downregulatory effects on neutrophil-derived proinflammatory cytokines, IL-10 potently inhibited TNF-α, IL-1β, IL-8, and MIP-1β production triggered by OMV. Finally, a neutralizing anti-TNF-α monoclonal antibody (MAb) did not influence the release of IL-8 and MIP-1β induced by OMV, therefore excluding a role for endogenous TNF-α in mediating the induction of chemokine release by OMV. In contrast, the ability of lipopolysaccharide fromN. meningitidis B to induce the production of IL-8 and MIP-1β was significantly inhibited by anti-TNF-α MAb. Our results establish that, in response to OMV, neutrophils produce a proinflammatory profile of cytokines and chemokines which may not only play a role in the pathogenesis of meningitis but may also contribute to the development of protective immunity to serogroup B meningococci.


2001 ◽  
Vol 75 (13) ◽  
pp. 5930-5938 ◽  
Author(s):  
Mary Lou Jelachich ◽  
Howard L. Lipton

ABSTRACT Infection of susceptible mice with the low-neurovirulence Theiler's murine encephalomyelitis virus strain BeAn results in an inflammatory demyelinating disease similar to multiple sclerosis. While the majority of virus antigen is detected in central nervous system macrophages (Mφs), few infiltrating Mφs are infected. We used the myelomonocytic precursor M1 cell line to study BeAn virus-Mφ interactions in vitro to elucidate mechanisms for restricted virus expression. We have shown that restricted BeAn infection of M1 cells differentiated in vitro (M1-D) results in apoptosis. In this study, BeAn infection of gamma interferon (IFN-γ)-activated M1-D cells also resulted in apoptosis but with no evidence of virus replication or protein expression. RNase protection assays of M1-D cellular RNA revealed up-regulation of Fas and the p55 chain of the tumor necrosis factor alpha (TNF-α) receptor transcripts with IFN-γ activation. BeAn infection of activated cells resulted in increased caspase 8 mRNA transcripts and the appearance of TNF-α-related apoptosis-inducing ligand (TRAIL) 4 h postinfection. Both unactivated and activated M1-D cells expressed TRAIL receptors (R1 and R2), but only activated cells were killed by soluble TRAIL. Activated cells were also susceptible to soluble FasL- and TNF-α-induced apoptosis. The data suggest that IFN-γ-activated M1-D cell death receptors become susceptible to their ligands and that the cells respond to BeAn virus infection by producing the ligands TNF-α and TRAIL to kill the susceptible cells. Unactivated cells are not susceptible to FasL or TRAIL and require virus replication to initiate apoptosis. Therefore, two mechanisms of apoptosis induction can be triggered by BeAn infection: an intrinsic pathway requiring virus replication and an extrinsic pathway signaling through the death receptors.


2002 ◽  
Vol 76 (11) ◽  
pp. 5646-5653 ◽  
Author(s):  
Valérie Pasquetto ◽  
Stefan F. Wieland ◽  
Susan L. Uprichard ◽  
Marco Tripodi ◽  
Francis V. Chisari

ABSTRACT We have previously shown that alpha/beta interferon (IFN-α/β) and gamma interferon (IFN-γ) inhibit hepatitis B virus (HBV) replication by eliminating pregenomic RNA containing viral capsids from the hepatocyte. We have also shown that HBV-specific cytotoxic T lymphocytes that induce IFN-γ and tumor necrosis factor alpha (TNF-α) in the liver can inhibit HBV gene expression by destabilizing preformed viral mRNA. In order to further study the antiviral activity of IFN-α/β, IFN-γ, and TNF-α at the molecular level, we sought to reproduce these observations in an in vitro system. Accordingly, hepatocytes were derived from the livers of HBV-transgenic mice that also expressed the constitutively active cytoplasmic domain of the human hepatocyte growth factor receptor (c-Met). Here, we show that the resultant well-differentiated, continuous hepatocyte cell lines (HBV-Met) replicate HBV and that viral replication in these cells is efficiently controlled by IFN-α/β or IFN-γ, which eliminate pregenomic RNA-containing capsids from the cells as they do in the liver. Furthermore, we demonstrate that IFN-γ, but not IFN-α/β, is capable of inhibiting HBV gene expression in this system, especially when it acts synergistically with TNF-α. These cells should facilitate the analysis of the intracellular signaling pathways and effector mechanisms responsible for these antiviral effects.


2004 ◽  
Vol 72 (5) ◽  
pp. 2477-2483 ◽  
Author(s):  
Naoko Aoki ◽  
Anna Zganiacz ◽  
Peter Margetts ◽  
Zhou Xing

ABSTRACT DAP12 and its associating molecules MDL-1, TREM-1, and TREM-2 are the recently identified immune regulatory molecules, expressed primarily on myeloid cells including monocytes/macrophages, dendritic cells, NK cells, and neutrophils. However, little is known about the regulation of their expression during host antimicrobial responses. We have investigated the effect of pulmonary mycobacterial infection and type 1 cytokines on the expression of these molecules both in vivo and in vitro. While DAP12 was constitutively expressed at high levels in the lungs, the MDL-1, TREM-1, and TREM-2 molecules were inducible during mycobacterial infection. Their kinetic expression was correlated with that of the type 1 cytokines tumor necrosis factor alpha (TNF-α) and gamma interferon (IFN-γ). In primary lung macrophage cultures, high constitutive levels of DAP12 and TREM-2 were not modulated by mycobacterial or type 1 cytokine exposure. In contrast, expression of both MDL-1 and TREM-1 was markedly induced by mycobacterial infection and such induction was inhibited by concurrent exposure to IFN-γ. On mycobacterial infection of TNF-α−/− and IFN-γ−/− mice in vivo or their lung macrophages in vitro, TNF-α was found to be critical for mycobacterially induced MDL-1, but not TREM-1, expression whereas IFN-γ negatively regulated mycobacterially induced MDL-1 and TREM-1 expression. Our findings thus suggest that DAP12 and its associating molecules are differentially regulated by mycobacterial infection and type 1 cytokines and that MDL-1- and TREM-1-triggered DAP12 signaling may play an important role in antimicrobial type 1 immunity.


Sign in / Sign up

Export Citation Format

Share Document