scholarly journals Antischistosomiasis Liver Fibrosis Effects of Chlorogenic Acid through IL-13/miR-21/Smad7 Signaling Interactions In Vivo and In Vitro

2016 ◽  
Vol 61 (2) ◽  
Author(s):  
Yao Wang ◽  
Fan Yang ◽  
Jun Xue ◽  
Xuan Zhou ◽  
Lei Luo ◽  
...  

ABSTRACT This study investigated the antischistosomiasis liver fibrosis effects of chlorogenic acid (CGA) on interleukin 13 (IL-13)/microRNA-21 (miR-21)/Smad7 signaling interactions in the hepatic stellate LX2 cell line and schistosome-infected mice. The transfection was based on the ability of the GV273–miR-21–enhanced green fluorescent protein (EGFP) and GV369–miR-21–EGFP lentiviral system to up- or downregulate the miR-21 gene in LX2 cells. The mRNA expression of miR-21, Smad7, and connective tissue growth factor (CTGF) and the protein expression of Smad7, CTGF, Smad1, phosphor-Smad1 (p-Smad1), Smad2, p-Smad2, Smad2/3, p-Smad2/3, transforming growth factor β (TGF-β) receptor I, and α-smooth muscle actin (α-SMA) was assayed. Pathological manifestation of hepatic tissue was assessed for the degree of liver fibrosis in animals. The results showed that CGA could inhibit the mRNA expression of miR-21, promote Smad7, and inhibit CTGF mRNA expression. Meanwhile, CGA could significantly lower the protein levels of CTGF, p-Smad1, p-Smad2, p-Smad2/3, TGF-β receptor I, and α-SMA and elevate the Smad7 protein level. In vivo, with treatment with CGA, the signaling molecules of IL-13/miR-21/Smad7 interactions were markedly regulated. CGA could also reduce the degree of liver fibrosis in pathological manifestations. In conclusion, CGA could inhibit schistosomiasis-induced hepatic fibrosis through IL-13/miR-21/Smad7 signaling interactions in LX2 cells and schistosome-infected mice and might serve as an antifibrosis agent for treating schistosomiasis liver fibrosis.

2018 ◽  
Vol 50 (5) ◽  
pp. 1711-1725
Author(s):  
Bin Yu ◽  
Guan-nan Jin ◽  
Mei Ma ◽  
Hui-fang Liang ◽  
Bi-xiang Zhang ◽  
...  

Background/Aims: Cholestasis is characterized by intrahepatic accumulation of cytotoxic bile acids (BAs), ultimately leading to fibrosis and cirrhosis, but the precise role of BAs in cholestasis-induced liver fibrosis remains largely elusive. In this study, we investigated the role and the potential mechanisms of BAs during cholestasis in vivo and in vitro. Methods: The effect of BAs during cholestasis was studied in bile duct ligation (BDL) rat models in vivo. We performed immunohistochemistry, Western blotting, and quantitative RT-PCR to investigate the expression of connective tissue growth factor (CTGF/CCN2) in rat liver during cholestasis. The hepatic cell lines AML12 and BRL were stimulated with taurocholate (TC) and the level of CTGF/CCN2, and activation of ERK, Akt, p38 MAPK, JNK, YAP, and TGF-β/Smad signaling were examined using Western blotting. Next, to elucidate the mechanism underlying bile acid-induced CTGF/CCN2, we treated the cells with MEK1/2 inhibitor (U0126), YAP function inhibitor (verteporfin), p38 kinase inhibitor (SB203580), Akt inhibitor (MK2206), and small interfering RNA (siRNA) targeting mek1, erk, and yap in cooperation with TC. Besides, we confirmed the activation of these signaling pathways in BDL and sham rat livers by immunohistochemistry, Western blotting, and quantitative RT-PCR. Results: In this study, we confirmed that the expression of CTGF/CCN2 was increased in BDL-induced rodent cholestatic liver fibrosis. In addition, we showed that TC, the main component of BAs, enhanced the synthesis of CTGF/ CCN2 in AML12 and BRL hepatic cell lines. Moreover, we demonstrated that TC activated ERK, Akt, and YAP signaling in hepatocytes, but the precise roles of these signaling cascades in the expression of CTGF/CCN2 were different: TC-induced expression of CTGF/CCN2 was mediated by ERK-YAP signaling, whereas Akt signaling inhibited ERK signaling and YAP and subsequently the expression of CTGF/CCN2 in hepatocytes. Furthermore, YAP functioned as a downstream regulator of ERK signaling in TC-induced CTGF/CCN2 expression in hepatocytes. Conclusion: Our report provides evidence for the role of conjugated BAs in liver fibrosis and suggests that the production of CTGF/CCN2, induced by conjugated BAs via ERK-YAP axis activation, may be a therapeutic target in cholestasis-induced liver fibrosis.


2000 ◽  
Vol 68 (11) ◽  
pp. 6505-6508 ◽  
Author(s):  
K. A. Wilkinson ◽  
T. D. Martin ◽  
S. M. Reba ◽  
H. Aung ◽  
R. W. Redline ◽  
...  

ABSTRACT Latency-associated peptide of transforming growth factor β (TGF-β) (LAP) was used to determine whether in vivo modulation of TGF-β bioactivity enhanced pulmonary immunity to Mycobacterium bovis BCG infection in C57BL/6 mice. LAP decreased BCG growth in the lung and enhanced antigen-specific T-cell proliferation and gamma interferon mRNA expression. Thus, susceptibility of the lung to primary BCG infection may be partially mediated by the immunosuppressive effects of TGF-β.


2017 ◽  
Vol 204 (3-4) ◽  
pp. 191-198 ◽  
Author(s):  
Gemma A. Figtree ◽  
Kristen J. Bubb ◽  
Owen Tang ◽  
Eddy Kizana ◽  
Carmine Gentile

Spheroid cultures are among the most explored cellular biomaterials used in cardiovascular research, due to their improved integration of biochemical and physiological features of the heart in a defined architectural three-dimensional microenvironment when compared to monolayer cultures. To further explore the potential use of spheroid cultures for research, we engineered a novel in vitro model of the heart with vascularized cardiac spheroids (VCSs), by coculturing cardiac myocytes, endothelial cells, and fibroblasts isolated from dissociated rat neonatal hearts (aged 1-3 days) in hanging drop cultures. To evaluate the validity of VCSs in recapitulating pathophysiological processes typical of the in vivo heart, such as cardiac fibrosis, we then treated VCSs with transforming growth factor beta 1 (TGFβ1), a known profibrotic agent. Our mRNA analysis demonstrated that TGFβ1-treated VCSs present elevated levels of expression of connective tissue growth factor, fibronectin, and TGFβ1 when compared to control cultures. We demonstrated a dramatic increase in collagen deposition following TGFβ1 treatment in VCSs in the PicroSirius Red-stained sections. Doxorubicin, a renowned cardiotoxic and profibrotic agent, triggered apoptosis and disrupted vascular networks in VCSs. Taken together, our findings demonstrate that VCSs are a valid model for the study of the mechanisms involved in cardiac fibrosis, with the potential to be used to investigate novel mechanisms and therapeutics for treating and preventing cardiac fibrosis in vitro.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Hyo-Seon Kim ◽  
Hyeong-Geug Kim ◽  
Hye-Won Lee ◽  
Sung-Bae Lee ◽  
Jin-Seok Lee ◽  
...  

We aimed to evaluate the antihepatofibrotic effects of CGXII, an aqueous extract which is composed of A. iwayomogi, A. xanthioides, and S. miltiorrhiza, against dimethylnitrosamine- (DMN-) induced hepatofibrosis. Male Sprague Dawley rats were intraperitoneally injected with 10 mg/kg of DMN for 4 weeks (three consecutive days weekly). Rats were orally given distilled water, CGXII (50 or 100 mg/kg), or dimethyl dimethoxy biphenyl dicarboxylate (50 mg/kg) daily. DMN injection caused substantial alteration of total body weight and liver and spleen mass, whereas they were notably normalized by CGXII. CGXII treatment also markedly attenuated the elevation of serum aspartate aminotransferase and alanine aminotransferase levels, hepatic lipid peroxidation, and protein carbonyl contents. Collagen accumulation in hepatic tissue evidenced by histopathological analysis and quantitative assessment of hepatic hydroxyproline was ameliorated by CGXII. Immunohistochemistry analysis revealed decreased α-smooth muscle actin supporting the antihepatofibrotic effect of CGXII. The profibrogenic cytokines transforming growth factor-β, platelet-derived growth factor-β, and connective tissue growth factor were increased by DMN injection. Administration of CGXII normalized the protein and gene expression levels of these cytokines. Our findings suggest that CGXII lowers the levels of profibrogenic cytokines and thereby exerts antifibrotic effects.


2000 ◽  
Vol 20 (21) ◽  
pp. 8103-8111 ◽  
Author(s):  
Stephen J. Wicks ◽  
Stephen Lui ◽  
Nadia Abdel-Wahab ◽  
Roger M. Mason ◽  
Andrew Chantry

ABSTRACT Members of the transforming growth factor β (TGF-β) family transduce signals through Smad proteins. Smad signaling can be regulated by the Ras/Erk/mitogen-activated protein pathway in response to receptor tyrosine kinase activation and the gamma interferon pathway and also by the functional interaction of Smad2 with Ca2+-calmodulin. Here we report that Smad–TGF-β-dependent transcriptional responses are prevented by expression of a constitutively activated Ca2+-calmodulin-dependent protein kinase II (Cam kinase II). Smad2 is a target substrate for Cam kinase II in vitro at serine-110, -240, and -260. Cam kinase II induces in vivo phosphorylation of Smad2 and Smad4 and, to a lesser extent, Smad3. A phosphopeptide antiserum raised against Smad2 phosphoserine-240 reacted with Smad2 in vivo when coexpressed with Cam kinase II and by activation of the platelet-derived growth factor receptor, the epidermal growth factor receptor, HER2 (c-erbB2), and the TGF-β receptor. Furthermore, Cam kinase II blocked nuclear accumulation of a Smad2 and induced Smad2-Smad4 hetero-oligomerization independently of TGF-β receptor activation, while preventing TGF-β-dependent Smad2-Smad3 interactions. These findings provide a novel cross-talk mechanism by which Ca2+-dependent kinases activated downstream of multiple growth factor receptors antagonize cell responses to TGF-β.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lichao Qian ◽  
Shuai Ren ◽  
Zhongchi Xu ◽  
Yawei Zheng ◽  
Lihua Wu ◽  
...  

Protection against hypoxia injury is an important therapeutic strategy for treating hypertensive nephropathy. In this study, the effects of Qian Yang Yu Yin granule (QYYY) on spontaneously hypertensive rats fed with high salt diet and HEK293T cells exposed to hypoxia were investigated. After eight weeks’ treatment of QYYY, blood pressure, serum creatinine, serum cystatin C, blood urea nitrogen, urinary β2-microglobulin, urinary N-acetyl-β-glucosaminidase, and urinary microalbumin were assessed. The changes of hypoxia-inducible factor-1α (HIF-1α), pyruvate kinase M2 (PKM2), glucose transport 1 (GLUT1), lactate dehydrogenase A (LDH-A), connective tissue growth factor (CTGF), transforming growth factor-β1 (TGF-β1), ATP, lactate, pyruvate, and pathology were also assessed in vivo. HEK293T cells pre-treated with QYYY and/or HIF-1α over expressing cells were cultured in a three gas hypoxic incubator chamber (5% CO2, 1% O2, 94% N2) for 12 h and then the expressions of HIF-1α, PKM2, GLUT1, LDH-A, CTGF, TGF-β1, ATP, lactate, and pyruvate were detected. Our results showed that QYYY promoted the indicators of renal inflammation and fibrosis mediated by HIF-1α/PKM2 positive feedback loop in vivo and vitro. Our findings indicated that QYYY treated hypertensive nephropathy by regulating metabolic reprogramming mediated by HIF-1α/PKM2 positive feedback loop.


Pharmacology ◽  
2014 ◽  
Vol 94 (1-2) ◽  
pp. 80-89 ◽  
Author(s):  
J. Eliuth Pérez-Vargas ◽  
Natanael Zarco ◽  
Mineko Shibayama ◽  
José Segovia ◽  
Víctor Tsutsumi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document