scholarly journals Spread of Plasmid-Encoded NDM-1 and GES-5 Carbapenemases among Extensively Drug-Resistant and Pandrug-Resistant Clinical Enterobacteriaceae in Durban, South Africa

2018 ◽  
Vol 62 (5) ◽  
Author(s):  
Torunn Pedersen ◽  
John Osei Sekyere ◽  
Usha Govinden ◽  
Krishnee Moodley ◽  
Audun Sivertsen ◽  
...  

ABSTRACT Whole-genome sequence analyses revealed the presence of bla NDM-1 ( n = 31), bla GES-5 ( n = 8), bla OXA-232 ( n = 1), or bla NDM-5 ( n = 1) in extensively drug-resistant and pandrug-resistant Enterobacteriaceae organisms isolated from in-patients in 10 private hospitals (2012 to 2013) in Durban, South Africa. Two novel NDM-1-encoding plasmids from Klebsiella pneumoniae were circularized by PacBio sequencing. In p19-10_01 [IncFIB(K); 223.434 bp], bla NDM-1 was part of a Tn 1548 -like structure (16.276 bp) delineated by IS 26 . The multireplicon plasmid p18-43_01 [IncR_1/IncFIB(pB171)/IncFII(Yp); 212.326 bp] shared an 80-kb region with p19-10_01, not including the bla NDM-1 -containing region. The two plasmids were used as references for tracing NDM-1-encoding plasmids in the other genome assemblies. The p19-10_01 sequence was detected in K. pneumoniae ( n = 7) only, whereas p18-43_01 was tracked to K. pneumoniae ( n = 4), Klebsiella michiganensis ( n = 1), Serratia marcescens ( n = 11), Enterobacter spp. ( n = 7), and Citrobacter freundii ( n = 1), revealing horizontal spread of this bla NDM-1 -bearing plasmid structure. Global phylogeny showed clustering of the K. pneumoniae (18/20) isolates together with closely related carbapenemase-negative ST101 isolates from other geographical origins. The South African isolates were divided into three phylogenetic subbranches, where each group had distinct resistance and replicon profiles, carrying either p19-10_01, p18-10_01, or pCHE-A1 (8,201 bp). The latter plasmid carried bla GES-5 and aacA4 within an integron mobilization unit. Our findings imply independent plasmid acquisition followed by local dissemination. Additionally, we detected bla OXA-232 carried by pPKPN4 in K. pneumoniae (ST14) and bla NDM-5 contained by a pNDM-MGR194-like genetic structure in Escherichia coli (ST167), adding even more complexity to the multilayer molecular mechanisms behind nosocomial spread of carbapenem-resistant Enterobacteriaceae in Durban, South Africa.

2020 ◽  
Vol 9 (20) ◽  
Author(s):  
Sara Lomonaco ◽  
Matthew A. Crawford ◽  
Christine Lascols ◽  
Debra J. Fisher ◽  
Kevin Anderson ◽  
...  

Infections in immunocompromised patients that are caused by extensively drug-resistant (XDR) Acinetobacter baumannii strains have been increasingly reported worldwide. In particular, carbapenem-resistant A. baumannii strains are a prominent cause of health care-associated infections. Here, we report draft genome assemblies for two clinical XDR A. baumannii isolates obtained from hospitalized patients in Pakistan.


2017 ◽  
Vol 61 (12) ◽  
Author(s):  
Lu Liu ◽  
Yu Feng ◽  
Xiaoxia Zhang ◽  
Alan McNally ◽  
Zhiyong Zong

ABSTRACT A colistin- and carbapenem-resistant Escherichia coli clinical isolate was found to carry two plasmid-borne colistin-resistant genes, mcr-1 and the newly identified mcr-3, and a carbapenemase gene, bla NDM-5. mcr-3 is a new variant (mcr-3.5) in the isolate and encodes three amino acid substitutions compared with the original MCR-3. mcr-3 was carried by a TnAs3-like transposon on a self-transmissible IncP plasmid in the isolate, highlighting that mcr-3 may have widely spread.


mSphere ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Ghiwa Makke ◽  
Ibrahim Bitar ◽  
Tamara Salloum ◽  
Balig Panossian ◽  
Sahar Alousi ◽  
...  

ABSTRACT Carbapenem-resistant Acinetobacter baumannii (CRAB) is an important opportunistic pathogen linked to a variety of nosocomial infections and hospital outbreaks worldwide. This study aimed at investigating and characterizing a CRAB outbreak at a large tertiary hospital in Lebanon. A total of 41 isolates were collected and analyzed using pulsed-field gel electrophoresis (PFGE). Whole-genome sequencing (WGS) was performed on all the isolates, and long-read PacBio sequencing was used to generate reference genomes. The multilocus sequence types (MLST), repertoire of resistance genes, and virulence factors were determined from the sequencing data. The plasmid content was analyzed both in silico and using the A. baumannii PCR-based replicon typing (AB-PBRT) method. Genome analysis initially revealed two clones, one carrying blaOXA-23 on Tn2006 (ST-1305, ST-195, and ST-218) and another carrying blaOXA-72 on pMAL-1 (ST-502 and ST-2059, a new ST), with the latter having two subclones, as revealed using the Bayesian transmission network. All isolates were extensively drug resistant (XDR). WGS analysis revealed the transmission pathways and demonstrated the diversity of CRAB isolates and mobile genetic elements in this health care setting. Outbreak detection using WGS and immediate implementation of infection control measures contribute to restraining the spread and decreasing mortality. IMPORTANCE Carbapenem-resistant Acinetobacter baumannii (CRAB) has been implicated in hospital outbreaks worldwide. Here, we present a whole-genome-based investigation of an extensively drug-resistant CRAB outbreak rapidly spreading and causing high incidences of mortality at numerous wards of a large tertiary hospital in Lebanon. This is the first study of its kind in the region. Two circulating clones were identified using a combination of molecular typing approaches, short- and long-read sequencing and Bayesian transmission network analysis. One clone carried blaOXA-23 on Tn2006 (ST-1305, ST-195, and ST-218), and another carried blaOXA-72 on a pMAL-1 plasmid (ST-502 and ST-2059, a new ST). A pMAL-2 plasmid was circulating between the two clones. The approaches implemented in this study and the obtained findings facilitate the tracking of outbreak scenarios in Lebanon and the region at large.


2018 ◽  
Vol 7 (23) ◽  
Author(s):  
Yogandree Ramsamy ◽  
Koleka P. Mlisana ◽  
Mushal Allam ◽  
Arshad Ismail ◽  
Ravesh Singh ◽  
...  

Here, we describe the genome sequence of a novel sequence type 3136 (ST3136) Klebsiella pneumoniae strain isolated in South Africa. The 5,574,236-bp genome harbored 23 resistance determinants and 12 virulence factors that are of cardinal importance to infections.


2017 ◽  
Vol 61 (9) ◽  
Author(s):  
Mariana Castanheira ◽  
Michael D. Huband ◽  
Rodrigo E. Mendes ◽  
Robert K. Flamm

ABSTRACT We evaluated the activity of meropenem-vaborbactam against contemporary nonfastidious Gram-negative clinical isolates, including Enterobacteriaceae isolates with resistance phenotypes and carbapenemase genotypes. Meropenem-vaborbactam (inhibitor at 8 μg/ml) and comparators were susceptibility tested by reference broth microdilution methods against 14,304 Gram-negative clinical isolates collected worldwide during 2014. Carbapenemase-encoding genes were screened by PCR and sequencing. Meropenem-vaborbactam (MIC50/90, ≤0.015/0.06 μg/ml) inhibited 99.1 and 99.3% of the 10,426 Enterobacteriaceae isolates tested at ≤1 and ≤2 μg/ml, respectively. Meropenem inhibited 97.3 and 97.7% of these isolates at the same concentrations. Against Enterobacteriaceae isolates displaying carbapenem-resistant Enterobacteriaceae (CRE) (n = 265), multidrug-resistant (MDR) (n = 1,210), and extensively drug-resistant (XDR) (n = 161) phenotypes, meropenem-vaborbactam displayed MIC50/90 values of 0.5/32, 0.03/1, and 0.5/32 μg/ml, respectively, whereas meropenem activities were 16/>32, 0.06/32, and 0.5/32 μg/ml, respectively. Among all geographic regions, the highest meropenem-vaborbactam activities were observed for CRE and MDR isolates from the United States (MIC50/90, 0.03/1 and 0.03/0.12 μg/ml, respectively). Meropenem-vaborbactam was very active against 135 KPC producers, and all isolates were inhibited by concentrations of ≤8 μg/ml (133 isolates by concentrations of ≤2 μg/ml). This combination had limited activity against isolates producing metallo-β-lactamases (including 25 NDM-1 and 16 VIM producers) and/or oxacillinases (27 OXA-48/OXA-163 producers) that were detected mainly in Asia-Pacific and some European countries. The activity of meropenem-vaborbactam was similar to that of meropenem alone against Pseudomonas aeruginosa, Acinetobacter spp., and Stenotrophomonas maltophilia. Meropenem-vaborbactam was active against contemporary Enterobacteriaceae isolates collected worldwide, and this combination demonstrated enhanced activity compared to those of meropenem and most comparator agents against CRE isolates and KPC producers, the latter of which are often MDR.


2020 ◽  
Vol 8 (1) ◽  
pp. 137 ◽  
Author(s):  
Yogandree Ramsamy ◽  
Koleka P. Mlisana ◽  
Mushal Allam ◽  
Daniel G. Amoako ◽  
Akebe L. K. Abia ◽  
...  

Whole-genome sequence (WGS) analyses were employed to investigate the genomic epidemiology of extensively drug-resistant Klebsiella pneumoniae strains, focusing on the carbapenem resistance-encoding determinants, mobile genetic support, clonal and epidemiological relationships. A total of ten isolates were obtained from patients admitted to the intensive care unit (ICU) in a public hospital in South Africa. Five isolates were from rectal swabs of colonized patients and five from blood cultures of patients with invasive carbapenem-resistant infections. Following microbial identification and antibiotic susceptibility tests, the isolates were subjected to WGS on the Illumina MiSeq platform. All the isolates showed genotypic resistance to tested β-lactams (NDM-1, OXA-1, CTX-M-15, TEM-1B, SHV-1) and other antibiotics. All but one isolate belonged to the ST152 with a novel sequence type, ST3136, differing by a single-locus variant. The isolates had the same plasmid multilocus sequence type (IncF[K12:A-:B36]) and capsular serotype (KL149), supporting the epidemiological linkage between the clones. Resistance to carbapenems in the 10 isolates was conferred by the blaNDM-1 mediated by the acquisition of multi-replicon [ColRNAI, IncFIB(pB171), Col440I, IncFII, IncFIB(K) and IncFII(Yp)] p18-43_01 plasmid. These findings suggest that the acquisition of blaNDM-1-bearing plasmid structure (p18-43_01), horizontal transfer and clonal dissemination facilitate the spread of carbapenemases in South Africa. This emphasizes the importance of targeted infection control measures to prevent dissemination.


2017 ◽  
Vol 61 (11) ◽  
Author(s):  
Andrea M. Hujer ◽  
Paul G. Higgins ◽  
Susan D. Rudin ◽  
Genevieve L. Buser ◽  
Steven H. Marshall ◽  
...  

ABSTRACT Carbapenem antibiotics are among the mainstays for treating infections caused by Acinetobacter baumannii, especially in the Northwest United States, where carbapenem-resistant A. baumannii remains relatively rare. However, between June 2012 and October 2014, an outbreak of carbapenem-resistant A. baumannii occurred in 16 patients from five health care facilities in the state of Oregon. All isolates were defined as extensively drug resistant. Multilocus sequence typing revealed that the isolates belonged to sequence type 2 (international clone 2 [IC2]) and were >95% similar as determined by repetitive-sequence-based PCR analysis. Multiplex PCR revealed the presence of a bla OXA carbapenemase gene, later identified as bla OXA-237. Whole-genome sequencing of all isolates revealed a well-supported separate branch within a global A. baumannii phylogeny. Pacific Biosciences (PacBio) SMRT sequencing was also performed on one isolate to gain insight into the genetic location of the carbapenem resistance gene. We discovered that bla OXA-237, flanked on either side by ISAba1 elements in opposite orientations, was carried on a 15,198-bp plasmid designated pORAB01-3 and was present in all 16 isolates. The plasmid also contained genes encoding a TonB-dependent receptor, septicolysin, a type IV secretory pathway (VirD4 component, TraG/TraD family) ATPase, an integrase, a RepB family plasmid DNA replication initiator protein, an alpha/beta hydrolase, and a BrnT/BrnA type II toxin-antitoxin system. This is the first reported outbreak in the northwestern United States associated with this carbapenemase. Particularly worrisome is that bla OXA-237 was carried on a plasmid and found in the most prominent worldwide clonal group IC2, potentially giving pORAB01-3 great capacity for future widespread dissemination.


Author(s):  
Elham Abbasi ◽  
Hossein Goudarzi ◽  
Ali Hashemi ◽  
Alireza Salimi Chirani ◽  
Abdollah Ardebili ◽  
...  

AbstractA major challenge in the treatment of infections has been the rise of extensively drug resistance (XDR) and multidrug resistance (MDR) in Acinetobacter baumannii. The goals of this study were to determine the pattern of antimicrobial susceptibility, blaOXA and carO genes among burn-isolated A. baumannii strains. In this study, 100 A. baumannii strains were isolated from burn patients and their susceptibilities to different antibiotics were determined using disc diffusion testing and broth microdilution. Presence of carO gene and OXA-type carbapenemase genes was tested by PCR and sequencing. SDS-PAGE was done to survey CarO porin and the expression level of carO gene was evaluated by Real-Time PCR. A high rate of resistance to meropenem (98%), imipenem (98%) and doripenem (98%) was detected. All tested A. baumannii strains were susceptible to colistin. The results indicated that 84.9% were XDR and 97.9% of strains were MDR. In addition, all strains bore blaOXA-51 like and blaOXA-23 like and carO genes. Nonetheless, blaOXA-58 like and blaOXA-24 like genes were harbored by 0 percent and 76 percent of strains, respectively. The relative expression levels of the carO gene ranged from 0.06 to 35.01 fold lower than that of carbapenem-susceptible A. baumannii ATCC19606 and SDS – PAGE analysis of the outer membrane protein showed that all 100 isolates produced CarO. The results of current study revealed prevalence of blaOXA genes and changes in carO gene expression in carbapenem resistant A.baumannii.


2020 ◽  
Vol 9 (40) ◽  
Author(s):  
Peechanika Chopjitt ◽  
Thidathip Wongsurawat ◽  
Piroon Jenjaroenpun ◽  
Parichart Boueroy ◽  
Rujirat Hatrongjit ◽  
...  

ABSTRACT Here, we report the complete genome sequences of four clinical isolates of extensively drug-resistant Acinetobacter baumannii (XDRAB), isolated in Thailand. These results revealed multiple antimicrobial-resistant genes, each involving two sequence type 16 (ST16) isolates, ST2, and a novel sequence type isolate, ST1479.


Sign in / Sign up

Export Citation Format

Share Document