scholarly journals RND-Type Efflux Pumps in Multidrug-Resistant Clinical Isolates of Acinetobacter baumannii: Major Role for AdeABC Overexpression and AdeRS Mutations

2013 ◽  
Vol 57 (7) ◽  
pp. 2989-2995 ◽  
Author(s):  
Eun-Jeong Yoon ◽  
Patrice Courvalin ◽  
Catherine Grillot-Courvalin

ABSTRACTIncreased expression of chromosomal genes for resistance-nodulation-cell division (RND)-type efflux systems plays a major role in the multidrug resistance (MDR) ofAcinetobacter baumannii. However, the relative contributions of the three most prevalent pumps, AdeABC, AdeFGH, and AdeIJK, have not been evaluated in clinical settings. We have screened 14 MDR clinical isolates shown to be distinct on the basis of multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE) for the presence and overexpression of the three Ade efflux systems and analyzed the sequences of the regulators AdeRS, a two-component system, for AdeABC and AdeL, a LysR-type regulator, for AdeFGH. GeneadeBwas detected in 13 of 14 isolates, andadeGand the intrinsicadeJgene were detected in all strains. Significant overexpression ofadeBwas observed in 10 strains, whereas only 7 had moderately increased levels of expression of AdeFGH, and none overexpressed AdeIJK. Thirteen strains had reduced susceptibility to tigecycline, but there was no correlation between tigecycline MICs and the levels of AdeABC expression, suggesting the presence of other mechanisms for tigecycline resistance. No mutations were found in the highly conserved LysR regulator of the nine strains expressing AdeFGH. In contrast, functional mutations were found in conserved domains of AdeRS in all the strains that overexpressed AdeABC with two mutational hot spots, one in AdeS near histidine 149 suggesting convergent evolution and the other in the DNA binding domain of AdeR compatible with horizontal gene transfer. This report outlines the high incidence of AdeABC efflux pump overexpression in MDRA. baumanniias a result of a variety of single mutations in the corresponding two-component regulatory system.

2012 ◽  
Vol 57 (1) ◽  
pp. 592-596 ◽  
Author(s):  
Jean-Marc Rolain ◽  
Seydina M. Diene ◽  
Marie Kempf ◽  
Gregory Gimenez ◽  
Catherine Robert ◽  
...  

ABSTRACTWe compare the whole-genome sequences of two multidrug-resistant clinicalAcinetobacter baumanniiisolates recovered in the same patient before (ABIsac_ColiS susceptible to colistin and rifampin only) and after (ABIsac_ColiR resistant to colistin and rifampin) treatment with colistin and rifampin. We decipher all the molecular mechanisms of antibiotic resistance, and we found mutations in therpoBgene and in the PmrAB two-component system explaining resistance to rifampin and colistin in ABIsac_ColiR, respectively.


2015 ◽  
Vol 60 (1) ◽  
pp. 57-63 ◽  
Author(s):  
Suvarna Krishnamoorthy ◽  
Bhavikkumar P. Shah ◽  
Hiu Ham Lee ◽  
Luis R. Martinez

ABSTRACTAcinetobacter baumanniiis a Gram-negative bacterium that causes nosocomial infections worldwide. This microbe's propensity to form biofilms allows it to persist and to survive on clinical abiotic surfaces for long periods. In fact,A. baumanniibiofilm formation and its multidrug-resistant nature severely compromise our capacity to care for patients in hospital environments. In contrast, microbicides such as cetrimide (CT) and chlorhexidine (CHX) play important roles in the prevention and treatment of infections. We assessed the efficacy of CT and CHX, either alone or in combination, in eradicatingA. baumanniibiofilms formed by clinical isolates, by using stainless steel washers to mimic hard abiotic surfaces found in hospital settings. We demonstrated that increasing amounts of each microbicide, alone or in combination, were able to damage and to reduce the viability ofA. baumanniibiofilms efficaciously. Interestingly, theadeBgene of the resistance-nodulation-cell division (RND) family is predominantly associated with acquired resistance to antimicrobials inA. baumannii. We showed that CT and CHX adversely modified the expression and function of the RND-type efflux pump AdeABC in biofilm-associatedA. baumanniicells. Furthermore, we established that these microbicides decreased the negative charges onA. baumanniicell membranes, causing dysregulation of the efflux pump and leading to cell death. Our findings suggest that CT and CHX, alone or in combination, can be used efficaciously for eradication ofA. baumanniifrom hospital surfaces, in order to reduce infections caused by this nosocomial agent.


2018 ◽  
Vol 62 (10) ◽  
Author(s):  
Fernando Sanz-García ◽  
Sara Hernando-Amado ◽  
José Luis Martínez

ABSTRACTCeftazidime-avibactam is a combination of β-lactam/β-lactamase inhibitor, the use of which is restricted to some clinical cases, including cystic fibrosis patients infected with multidrug-resistantPseudomonas aeruginosa, in which mutation is the main driver of resistance. This study aims to predict the mechanisms of mutation-driven resistance that are selected for whenP. aeruginosais challenged with either ceftazidime or ceftazidime-avibactam. For this purpose,P. aeruginosaPA14 was submitted to experimental evolution in the absence of antibiotics and in the presence of increasing concentrations of ceftazidime or ceftazidime-avibactam for 30 consecutive days. Final populations were analyzed by whole-genome sequencing. All evolved populations reached similar levels of ceftazidime resistance. In addition, they were more susceptible to amikacin and produced pyomelanin. A first event in this evolution was the selection of large chromosomal deletions containinghmgA(involved in pyomelanin production),galU(involved in β-lactams resistance), andmexXY-oprM(involved in aminoglycoside resistance). Besides mutations inmplanddacBthat regulate β-lactamase expression, mutations related to MexAB-OprM overexpression were prevalent. Ceftazidime-avibactam challenge selected mutants in the putative efflux pumpPA14_45890andPA14_45910and in a two-component system (PA14_45870andPA14_45880), likely regulating its expression. All populations produced pyomelanin and were more susceptible to aminoglycosides, likely due to the selection of large chromosomal deletions. Since pyomelanin-producing mutants presenting similar deletions are regularly isolated from infections, the potential aminoglycoside hypersusceptiblity and reduced β-lactam susceptibility of pyomelanin-producingP. aeruginosashould be taken into consideration for treating infections caused by these isolates.


2014 ◽  
Vol 197 (5) ◽  
pp. 861-871 ◽  
Author(s):  
Kumiko Kurabayashi ◽  
Yuko Hirakawa ◽  
Koichi Tanimoto ◽  
Haruyoshi Tomita ◽  
Hidetada Hirakawa

Particular interest in fosfomycin has resurfaced because it is a highly beneficial antibiotic for the treatment of refractory infectious diseases caused by pathogens that are resistant to other commonly used antibiotics. The biological cost to cells of resistance to fosfomycin because of chromosomal mutation is high. We previously found that a bacterial two-component system, CpxAR, induces fosfomycin tolerance in enterohemorrhagicEscherichia coli(EHEC) O157:H7. This mechanism does not rely on irreversible genetic modification and allows EHEC to relieve the fitness burden that results from fosfomycin resistance in the absence of fosfomycin. Here we show that another two-component system, TorSRT, which was originally characterized as a regulatory system for anaerobic respiration utilizing trimethylamine-N-oxide (TMAO), also induces fosfomycin tolerance. Activation of the Tor regulatory pathway by overexpression oftorR, which encodes the response regulator, or addition of TMAO increased fosfomycin tolerance in EHEC. We also show that phosphorylated TorR directly represses the expression ofglpT, a gene that encodes a symporter of fosfomycin and glycerol-3-phosphate, and activation of the TorR protein results in the reduced uptake of fosfomycin by cells. However, cells in which the Tor pathway was activated had an impaired growth phenotype when cultured with glycerol-3-phosphate as a carbon substrate. These observations suggest that the TorSRT pathway is the second two-component system to reversibly control fosfomycin tolerance and glycerol-3-phosphate uptake in EHEC, and this may be beneficial for bacteria by alleviating the biological cost. We expect that this mechanism could be a potential target to enhance the utility of fosfomycin as chemotherapy against multidrug-resistant pathogens.


2020 ◽  
Vol 64 (4) ◽  
Author(s):  
Sarah M. McLeod ◽  
Samir H. Moussa ◽  
Meredith A. Hackel ◽  
Alita A. Miller

ABSTRACT Acinetobacter baumannii-calcoaceticus complex (ABC) organisms cause severe infections that are difficult to treat due to preexisting antibiotic resistance. Sulbactam-durlobactam (formerly sulbactam-ETX2514) (SUL-DUR) is a β-lactam–β-lactamase inhibitor combination antibiotic designed to treat serious infections caused by ABC organisms, including multidrug-resistant (MDR) strains. The in vitro antibacterial activities of SUL-DUR and comparator agents were determined by broth microdilution against 1,722 clinical isolates of ABC organisms collected in 2016 and 2017 from 31 countries across Asia/South Pacific, Europe, Latin America, the Middle East, and North America. Over 50% of these isolates were resistant to carbapenems. Against this collection of global isolates, SUL-DUR had a MIC50/MIC90 of 1/2 μg/ml compared to a MIC50/MIC90 of 8/64 μg/ml for sulbactam alone. This level of activity was found to be consistent across organisms, regions, sources of infection, and subsets of resistance phenotypes, including MDR and extensively drug-resistant isolates. The SUL-DUR activity was superior to those of the tested comparators, with only colistin having similar potency. Whole-genome sequencing of the 39 isolates (2.3%) with a SUL-DUR MIC of >4 μg/ml revealed that these strains encoded either the metallo-β-lactamase NDM-1, which durlobactam does not inhibit, or single amino acid substitutions near the active site of penicillin binding protein 3 (PBP3), the primary target of sulbactam. In summary, SUL-DUR demonstrated potent antibacterial activity against recent, geographically diverse clinical isolates of ABC organisms, including MDR isolates.


2020 ◽  
Vol 60 (6) ◽  
pp. 494-507 ◽  
Author(s):  
Reyhaneh Behdad ◽  
Minoo Pargol ◽  
Amir Mirzaie ◽  
Shohreh Zare Karizi ◽  
Hassan Noorbazargan ◽  
...  

2018 ◽  
Vol 62 (9) ◽  
Author(s):  
María Pérez-Varela ◽  
Jordi Corral ◽  
Jesús Aranda ◽  
Jordi Barbé

ABSTRACTAcinetobacter baumanniihas emerged as an important multidrug-resistant nosocomial pathogen. In previous work, we identified a putative MFS transporter, AU097_RS17040, involved in the pathogenicity ofA. baumannii(M. Pérez-Varela, J. Corral, J. A. Vallejo, S. Rumbo-Feal, G. Bou, J. Aranda, and J. Barbé, Infect Immun 85:e00327-17, 2017,https://doi.org/10.1128/IAI.00327-17). In this study, we analyzed the susceptibility to diverse antimicrobial agents ofA. baumanniicells defective in this transporter, referred to as AbaQ. Our results showed that AbaQ is mainly involved in the extrusion of quinolone-type drugs inA. baumannii.


Gene Reports ◽  
2020 ◽  
Vol 21 ◽  
pp. 100952
Author(s):  
Mohammad Reza Kandehkar Ghahraman ◽  
Hossein Hosseini-Nave ◽  
Omid Azizi ◽  
Mohammad Reza Shakibaie ◽  
Hamid Reza Mollaie ◽  
...  

2017 ◽  
Vol 5 (5) ◽  
Author(s):  
Keesha E. Erickson ◽  
Nancy E. Madinger ◽  
Anushree Chatterjee

ABSTRACT We report here the draft genome sequences of two clinically isolated Acinetobacter baumannii strains. These samples were obtained from patients at the University of Colorado Hospital in 2007 and 2013 and encode an estimated 20 and 13 resistance genes, respectively.


Life ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1079
Author(s):  
Patrik Mlynarcik ◽  
Monika Dolejska ◽  
Iva Vagnerova ◽  
Jana Petrzelova ◽  
Iva Sukkar ◽  
...  

Increasing antimicrobial resistance in nosocomial pathogens, such as Acinetobacter baumannii, is becoming a serious threat to public health. It is necessary to detect β-lactamase-producing microorganisms in clinical settings to be able to control the spread of carbapenem resistance. This study was conducted to evaluate the presence of β-lactamases in a selected clinical isolate of A. baumannii of ST2P/ST195Ox and to characterize possible enzymes, as well as its β-lactam resistome, using PCR and whole-genome sequencing analysis. PCR and sequencing confirmed that the isolate harbored five bla gene alleles, namely, blaADC-73, blaTEM-1, blaOXA-23, blaOXA-58 and blaOXA-66, as well as aminoglycosides, macrolides, sulfonamides and tetracyclines resistance determinants, which were either chromosomally and/or plasmid located. Furthermore, a gene order comparison using MAUVE alignment showed multiple changes compared with the clinical isolate of Malaysian A. baumannii AC30 genome and 76 regions with high homology. This study suggests that resistance to β-lactams in this A. baumannii isolate is mainly due to an overproduction of β-lactamases in combination with other resistance mechanism (efflux pump system).


Sign in / Sign up

Export Citation Format

Share Document