scholarly journals Targeting the Nonmevalonate Pathway inBurkholderia cenocepaciaIncreases Susceptibility to Certain β-Lactam Antibiotics

2018 ◽  
Vol 62 (5) ◽  
pp. e02607-17 ◽  
Author(s):  
Andrea Sass ◽  
Annelien Everaert ◽  
Heleen Van Acker ◽  
Freija Van den Driessche ◽  
Tom Coenye

ABSTRACTThe nonmevalonate pathway is the sole pathway for isoprenoid biosynthesis inBurkholderia cenocepaciaand is possibly a novel target for the development of antibacterial chemotherapy. The goals of the present study were to evaluate the essentiality ofdxr, the second gene of the nonmevalonate pathway, inB. cenocepaciaand to determine whether interfering with the nonmevalonate pathway increases susceptibility toward antibiotics. To this end, a rhamnose-inducible conditionaldxrknockdown mutant ofB. cenocepaciastrain K56-2 (B. cenocepaciaK56-2dxr) was constructed, using a plasmid which enables the delivery of a rhamnose-inducible promoter in the chromosome. Expression ofdxris essential for bacterial growth; the growth defect observed in thedxrmutant could be complemented by expressingdxr in transunder the control of a constitutive promoter, but not by providing 2-C-methyl-d-erythritol-4-phosphate, the reaction product of DXR (1-deoxy-d-xylulose 5-phosphate reductoisomerase).B. cenocepaciaK56-2dxrshowed markedly increased susceptibility to the β-lactam antibiotics aztreonam, ceftazidime, and cefotaxime, while susceptibility to other antibiotics was not (or was much less) affected; this increased susceptibility could also be complemented byin transexpression ofdxr. A similarly increased susceptibility was observed when antibiotics were combined with FR900098, a known DXR inhibitor. Our data confirm that the nonmevalonate pathway is essential inB. cenocepaciaand suggest that combining potent DXR inhibitors with selected β-lactam antibiotics is a useful strategy to combatB. cenocepaciainfections.

2021 ◽  
Vol 7 (12) ◽  
Author(s):  
Arthur K. Turner ◽  
Muhammad Yasir ◽  
Sarah Bastkowski ◽  
Andrea Telatin ◽  
Andrew Page ◽  
...  

Trimethoprim and sulfamethoxazole are used commonly together as cotrimoxazole for the treatment of urinary tract and other infections. The evolution of resistance to these and other antibacterials threatens therapeutic options for clinicians. We generated and analysed a chemical-biology-whole-genome data set to predict new targets for antibacterial combinations with trimethoprim and sulfamethoxazole. For this we used a large transposon mutant library in Escherichia coli BW25113 where an outward-transcribing inducible promoter was engineered into one end of the transposon. This approach allows regulated expression of adjacent genes in addition to gene inactivation at transposon insertion sites, a methodology that has been called TraDIS-Xpress. These chemical genomic data sets identified mechanisms for both reduced and increased susceptibility to trimethoprim and sulfamethoxazole. The data identified that over-expression of FolA reduced trimethoprim susceptibility, a known mechanism for reduced susceptibility. In addition, transposon insertions into the genes tdk, deoR, ybbC, hha, ldcA, wbbK and waaS increased susceptibility to trimethoprim and likewise for rsmH, fadR, ddlB, nlpI and prc with sulfamethoxazole, while insertions in ispD, uspC, minC, minD, yebK, truD and umpG increased susceptibility to both these antibiotics. Two of these genes’ products, Tdk and IspD, are inhibited by AZT and fosmidomycin respectively, antibiotics that are known to synergise with trimethoprim. Thus, the data identified two known targets and several new target candidates for the development of co-drugs that synergise with trimethoprim, sulfamethoxazole or cotrimoxazole. We demonstrate that the TraDIS-Xpress technology can be used to generate information-rich chemical-genomic data sets that can be used for antibacterial development.


2018 ◽  
Vol 85 (4) ◽  
Author(s):  
Qinghao Song ◽  
Zhen Li ◽  
Rouke Chen ◽  
Xiaopan Ma ◽  
Xiang Xiao ◽  
...  

ABSTRACT The discovery of hyperthermophiles has dramatically changed our understanding of the habitats in which life can thrive. However, the extreme high temperatures in which these organisms live have severely restricted the development of genetic tools. The archaeon Pyrococcus yayanosii A1 is a strictly anaerobic and piezophilic hyperthermophile that is an ideal model for studies of extreme environmental adaptation. In the present study, we identified a high hydrostatic pressure (HHP)-inducible promoter (Phhp) that controls target gene expression under HHP. We developed an HHP-inducible toxin-antitoxin cassette (HHP-TAC) containing (i) a counterselectable marker in which a gene encoding a putative toxin (virulence-associated protein C [PF0776 {VapC}]) controlled by the HHP-inducible promoter was used in conjunction with the gene encoding antitoxin PF0775 (VapB), which was fused to a constitutive promoter (PhmtB), and (ii) a positive marker with the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase-encoding gene from P. furiosus controlled by the constitutive promoter Pgdh. The HHP-TAC was constructed to realize markerless gene disruption directly in P. yayanosii A1 in rich medium. The pop-out recombination step was performed using an HHP-inducible method. As proof, the PYCH_13690 gene, which encodes a 4-α-glucanotransferase, was successfully deleted from the strain P. yayanosii A1. The results showed that the capacity for starch hydrolysis in the Δ1369 mutant decreased dramatically compared to that in the wild-type strain. The inducible toxin-antitoxin system developed in this study greatly increases the genetic tools available for use in hyperthermophiles. IMPORTANCE Genetic manipulations in hyperthermophiles have been studied for over 20 years. However, the extremely high temperatures under which these organisms grow have limited the development of genetic tools. In this study, an HHP-inducible promoter was used to control the expression of a toxin. Compared to sugar-inducible and cold-shock-inducible promoters, the HHP-inducible promoter rarely has negative effects on the overall physiology and central metabolism of microorganisms, especially piezophilic hyperthermophiles. Previous studies have used auxotrophic strains as hosts, which may interfere with studies of adaptation and metabolism. Using an inducible toxin-antitoxin (TA) system as a counterselectable marker enables the generation of a markerless gene disruption strain without the use of auxotrophic mutants and counterselection with 5-fluoroorotic acid. TA systems are widely distributed in bacteria and archaea and can be used to overcome the limitations of high growth temperatures and dramatically extend the selectivity of genetic tools in hyperthermophiles.


mBio ◽  
2018 ◽  
Vol 9 (6) ◽  
Author(s):  
Jane E. Schulte ◽  
Mark Goulian

ABSTRACTSixA, a well-conserved protein found in proteobacteria, actinobacteria, and cyanobacteria, is the only reported example of a bacterial phosphohistidine phosphatase. A single protein target of SixA has been reported to date: theEscherichia colihistidine kinase ArcB. The present work analyzes an ArcB-independent growth defect of asixAdeletion inE. coli. A screen for suppressors, analysis of various mutants, and phosphorylation assays indicate that SixA modulates phosphorylation of the nitrogen-related phosphotransferase system (PTSNtr). The PTSNtris a widely conserved bacterial pathway that regulates diverse metabolic processes through the phosphorylation states of its protein components, EINtr, NPr, and EIIANtr, which receive phosphoryl groups on histidine residues. However, a mechanism for dephosphorylating this system has not been reported. The results presented here suggest a model in which SixA removes phosphoryl groups from the PTSNtrby acting on NPr. This work uncovers a new role for the phosphohistidine phosphatase SixA and, through factors that affect SixA expression or activity, may point to additional inputs that regulate the PTSNtr.IMPORTANCEOne common means to regulate protein activity is through phosphorylation. Protein phosphatases exist to reverse this process, returning the protein to the unphosphorylated form. The vast majority of protein phosphatases that have been identified target phosphoserine, phosphotheronine, and phosphotyrosine. A widely conserved phosphohistidine phosphatase was identified inEscherichia coli20 years ago but remains relatively understudied. The present work shows that this phosphatase modulates the nitrogen-related phosphotransferase system, a pathway that is regulated by nitrogen and carbon metabolism and affects diverse aspects of bacterial physiology. Until now, there was no known mechanism for removing phosphoryl groups from this pathway.


2018 ◽  
Vol 87 (2) ◽  
Author(s):  
Kimberly L. James ◽  
Austin B. Mogen ◽  
Jessica N. Brandwein ◽  
Silvia S. Orsini ◽  
Miranda J. Ridder ◽  
...  

ABSTRACTStaphylococcus aureusnitric oxide synthase (saNOS) is a major contributor to virulence, stress resistance, and physiology, yet the specific mechanism(s) by which saNOS intersects with other known regulatory circuits is largely unknown. The SrrAB two-component system, which modulates gene expression in response to the reduced state of respiratory menaquinones, is a positive regulator ofnosexpression. Several SrrAB-regulated genes were also previously shown to be induced in an aerobically respiringnosmutant, suggesting a potential interplay between saNOS and SrrAB. Therefore, a combination of genetic, molecular, and physiological approaches was employed to characterize anos srrABmutant, which had significant reductions in the maximum specific growth rate and oxygen consumption when cultured under conditions promoting aerobic respiration. Thenos srrABmutant secreted elevated lactate levels, correlating with the increased transcription of lactate dehydrogenases. Expression of nitrate and nitrite reductase genes was also significantly enhanced in thenos srrABdouble mutant, and its aerobic growth defect could be partially rescued with supplementation with nitrate, nitrite, or ammonia. Furthermore, elevated ornithine and citrulline levels and highly upregulated expression of arginine deiminase genes were observed in the double mutant. These data suggest that a dual deficiency in saNOS and SrrAB limitsS. aureusto fermentative metabolism, with a reliance on nitrate assimilation and the urea cycle to help fuel energy production. Thenos,srrAB, andnos srrABmutants showed comparable defects in endothelial intracellular survival, whereas thesrrABandnos srrABmutants were highly attenuated during murine sepsis, suggesting that SrrAB-mediated metabolic versatility is dominantin vivo.


2011 ◽  
Vol 80 (2) ◽  
pp. 493-505 ◽  
Author(s):  
Patrick D. Vigil ◽  
Travis J. Wiles ◽  
Michael D. Engstrom ◽  
Lev Prasov ◽  
Matthew A. Mulvey ◽  
...  

ABSTRACTUropathogenicEscherichia coli(UPEC) is responsible for the majority of uncomplicated urinary tract infections (UTI) and represents the most common bacterial infection in adults. UPEC utilizes a wide range of virulence factors to colonize the host, including the novel repeat-in-toxin (RTX) protein TosA, which is specifically expressed in the host urinary tract and contributes significantly to the virulence and survival of UPEC.tosA, found in strains within the B2 phylogenetic subgroup ofE. coli, serves as a marker for strains that also contain a large number of well-characterized UPEC virulence factors. The presence oftosAin anE. coliisolate predicts successful colonization of the murine model of ascending UTI, regardless of the source of the isolate. Here, a detailed analysis of the function oftosArevealed that this gene is transcriptionally linked to genes encoding a conserved type 1 secretion system similar to other RTX family members. TosA localized to the cell surface and was found to mediate (i) adherence to host cells derived from the upper urinary tract and (ii) survival in disseminated infections and (iii) to enhance lethality during sepsis (as assessed in two different animal models of infection). An experimental vaccine, using purified TosA, protected vaccinated animals against urosepsis. From this work, it was concluded that TosA belongs to a novel group of RTX proteins that mediate adherence and host damage during UTI and urosepsis and could be a novel target for the development of therapeutics to treat ascending UTIs.


mSphere ◽  
2021 ◽  
Vol 6 (3) ◽  
Author(s):  
Mohamed M. Tawfik ◽  
Magnus Bertelsen ◽  
Mohamed A. Abdel-Rahman ◽  
Peter N. Strong ◽  
Keith Miller

ABSTRACT The increasing development of microbial resistance to classical antimicrobial agents has led to the search for novel antimicrobials. Antimicrobial peptides (AMPs) derived from scorpion and snake venoms offer an attractive source for the development of novel therapeutics. Smp24 (24 amino acids [aa]) and Smp43 (43 aa) are broad-spectrum AMPs that have been identified from the venom gland of the Egyptian scorpion Scorpio maurus palmatus and subsequently characterized. Using a DNA microarray approach, we examined the transcriptomic responses of Escherichia coli to subinhibitory concentrations of Smp24 and Smp43 peptides following 5 h of incubation. Seventy-two genes were downregulated by Smp24, and 79 genes were downregulated by Smp43. Of these genes, 14 genes were downregulated in common and were associated with bacterial respiration. Fifty-two genes were specifically upregulated by Smp24. These genes were predominantly related to cation transport, particularly iron transport. Three diverse genes were independently upregulated by Smp43. Strains with knockouts of differentially regulated genes were screened to assess the effect on susceptibility to Smp peptides. Ten mutants in the knockout library had increased levels of resistance to Smp24. These genes were predominantly associated with cation transport and binding. Two mutants increased resistance to Smp43. There was no cross-resistance in mutants resistant to Smp24 or Smp43. Five mutants showed increased susceptibility to Smp24, and seven mutants showed increased susceptibility to Smp43. Of these mutants, formate dehydrogenase knockout (fdnG) resulted in increased susceptibility to both peptides. While the electrostatic association between pore-forming AMPs and bacterial membranes followed by integration of the peptide into the membrane is the initial starting point, it is clear that there are numerous subsequent additional intracellular mechanisms that contribute to their overall antimicrobial effect. IMPORTANCE The development of life-threatening resistance of pathogenic bacteria to the antibiotics typically in use in hospitals and the community today has led to an urgent need to discover novel antimicrobial agents with different mechanisms of action. As an ancient host defense mechanism of the innate immune system, antimicrobial peptides (AMPs) are attractive candidates to fill that role. Scorpion venoms have proven to be a rich source of AMPs. Smp24 and Smp43 are new AMPs that have been identified from the venom gland of the Egyptian scorpion Scorpio maurus palmatus, and these peptides can kill a wide range of bacterial pathogens. By better understanding how these AMPs affect bacterial cells, we can modify their structure to make better drugs in the future.


2011 ◽  
Vol 10 (8) ◽  
pp. 1034-1042 ◽  
Author(s):  
Rebecca A. Hall ◽  
Kara J. Turner ◽  
James Chaloupka ◽  
Fabien Cottier ◽  
Luisa De Sordi ◽  
...  

ABSTRACTLiving as a commensal,Candida albicansmust adapt and respond to environmental cues generated by the mammalian host and by microbes comprising the natural flora. These signals have opposing effects onC. albicans, with host cues promoting the yeast-to-hyphal transition and bacteria-derived quorum-sensing molecules inhibiting hyphal development. Hyphal development is regulated through modulation of the cyclic AMP (cAMP)/protein kinase A (PKA) signaling pathway, and it has been postulated that quorum-sensing molecules can affect filamentation by inhibiting the cAMP pathway. Here, we show that both farnesol and 3-oxo-C12-homoserine lactone, a quorum-sensing molecule secreted byPseudomonas aeruginosa, block hyphal development by affecting cAMP signaling; they both directly inhibited the activity of theCandidaadenylyl cyclase, Cyr1p. In contrast, the 12-carbon alcohol dodecanol appeared to modulate hyphal development and the cAMP signaling pathway without directly affecting the activity of Cyr1p. Instead, we show that dodecanol exerted its effects through a mechanism involving theC. albicanshyphal repressor, Sfl1p. Deletion ofSFL1did not affect the response to farnesol but did interfere with the response to dodecanol. Therefore, quorum sensing inC. albicansis mediated via multiple mechanisms of action. Interestingly, our experiments raise the possibility that theBurkholderia cenocepaciadiffusible signal factor, BDSF, also mediates its effects via Sfl1p, suggesting that dodecanol's mode of action, but not farnesol or 3-oxo-C12-homoserine lactone, may be used by other quorum-sensing molecules.


2017 ◽  
Vol 61 (8) ◽  
Author(s):  
Yumeng Zhang ◽  
Jia Zhang ◽  
Peng Cui ◽  
Ying Zhang ◽  
Wenhong Zhang

ABSTRACT Pyrazinamide (PZA) is a critical drug used for the treatment of tuberculosis (TB). PZA is a prodrug that requires conversion to the active component pyrazinoic acid (POA) by pyrazinamidase (PZase) encoded by the pncA gene. Although resistance to PZA is mostly caused by pncA mutations and less commonly by rpsA, panD, and clpC1 mutations, clinical strains without these mutations are known to exist. While efflux of POA was demonstrated in Mycobacterium tuberculosis previously, the efflux proteins involved have not been identified. Here we performed POA binding studies with an M. tuberculosis proteome microarray and identified four efflux proteins (Rv0191, Rv3756c, Rv3008, and Rv1667c) that bind POA. Overexpression of the four efflux pump genes in M. tuberculosis caused low-level resistance to PZA and POA but not to other drugs. Furthermore, addition of efflux pump inhibitors such as reserpine, piperine, and verapamil caused increased susceptibility to PZA in M. tuberculosis strains overexpressing the efflux proteins Rv0191, Rv3756c, Rv3008, and Rv1667c. Our studies indicate that these four efflux proteins may be responsible for PZA/POA efflux and cause PZA resistance in M. tuberculosis. Future studies are needed to assess their roles in PZA resistance in clinical strains.


2017 ◽  
Vol 199 (22) ◽  
Author(s):  
Steven Higgins ◽  
Maria Sanchez-Contreras ◽  
Stefano Gualdi ◽  
Marta Pinto-Carbó ◽  
Aurélien Carlier ◽  
...  

ABSTRACT The study of the minimum set of genes required to sustain life is a fundamental question in biological research. Recent studies on bacterial essential genes suggested that between 350 and 700 genes are essential to support autonomous bacterial cell growth. Essential genes are of interest as potential new antimicrobial drug targets; hence, our aim was to identify the essential genome of the cystic fibrosis (CF) isolate Burkholderia cenocepacia H111. Using a transposon sequencing (Tn-Seq) approach, we identified essential genes required for growth in rich medium under aerobic and microoxic conditions as well as in a defined minimal medium with citrate as a sole carbon source. Our analysis suggests that 398 genes are required for autonomous growth in rich medium, a number that represents only around 5% of the predicted genes of this bacterium. Five hundred twenty-six genes were required to support growth in minimal medium, and 434 genes were essential under microoxic conditions (0.5% O2). A comparison of these data sets identified 339 genes that represent the minimal set of essential genes required for growth under all conditions tested and can be considered the core essential genome of B. cenocepacia H111. The majority of essential genes were found to be located on chromosome 1, and few such genes were located on chromosome 2, where most of them were clustered in one region. This gene cluster is fully conserved in all Burkholderia species but is present on chromosome 1 in members of the closely related genus Ralstonia, suggesting that the transfer of these essential genes to chromosome 2 in a common ancestor contributed toward the separation of the two genera. IMPORTANCE Transposon sequencing (Tn-Seq) is a powerful method used to identify genes that are essential for autonomous growth under various conditions. In this study, we have identified a set of “core essential genes” that are required for growth under multiple conditions, and these genes represent potential antimicrobial targets. We also identified genes specifically required for growth under low-oxygen and nutrient-limited environments. We generated conditional mutants to verify the results of our Tn-Seq analysis and demonstrate that one of the identified genes was not essential per se but was an artifact of the construction of the mutant library. We also present verified examples of genes that were not truly essential but, when inactivated, showed a growth defect. These examples have identified so-far-underestimated shortcomings of this powerful method.


2018 ◽  
Vol 62 (9) ◽  
Author(s):  
Christopher E. Wozniak ◽  
Zhenjian Lin ◽  
Eric W. Schmidt ◽  
Kelly T. Hughes ◽  
Theodore G. Liou

ABSTRACTMicrobes encode many uncharacterized gene clusters that may produce antibiotics and other bioactive small molecules. Methods for activating these genes are needed to explore their biosynthetic potential. A transposon containing an inducible promoter was randomly inserted into the genome of the soil bacteriumBurkholderia thailandensisto induce antibiotic expression. This screen identified the polyketide/nonribosomal peptide thailandamide as an antibiotic and discovered its regulator, AtsR. Mutants ofSalmonellaresistant to thailandamide had mutations in theaccAgene for acetyl coenzyme A (acetyl-CoA) carboxylase, which is one of the first enzymes in the fatty acid synthesis pathway. A second copy ofaccAin the thailandamide synthesis gene cluster keepsB. thailandensisresistant to its own antibiotic. These genetic techniques will likely be powerful tools for discovering other unusual antibiotics.


Sign in / Sign up

Export Citation Format

Share Document