scholarly journals Effects of Rifampin and Ketoconazole on Pharmacokinetics of Morinidazole in Healthy Chinese Subjects

2014 ◽  
Vol 58 (10) ◽  
pp. 5987-5993 ◽  
Author(s):  
Xiaoyan Pang ◽  
Yifan Zhang ◽  
Ruina Gao ◽  
Kan Zhong ◽  
Dafang Zhong ◽  
...  

ABSTRACTMorinidazole, a 5-nitroimidazole antimicrobial drug, has been approved for the treatment of amoebiasis, trichomoniasis, and anaerobic bacterial infections in China. It was reported that drug-drug interaction happened after the coadministration of ornidazole, an analog of morinidazole, and rifampin or ketoconazole. Therefore, we measured the plasma pharmacokinetics (PK) of morinidazole and its metabolites in the healthy Chinese volunteers prior to and following the administration of rifampin or ketoconazole using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The area under the concentration-time curve from time 0 to timet(AUC0-t) and maximum concentration in serum (Cmax) of morinidazole were decreased by 28% and 23%, respectively, after 6 days of exposure to 600 mg of rifampin once daily; theCmaxs ofN+-glucuronides were increased by 14%, while their AUC0-ts were hardly changed. After 7 days of exposure to 200 mg of ketoconazole once daily, the AUC0-tandCmaxof the parent drug were not affected significantly.Cmaxs ofN+-glucuronides were decreased by 23%; AUC0-ts were decreased by 14%. The exposure of sulfate conjugate was hardly changed after the coadministration of rifampin or ketoconazole. Using recombinant enzyme of UGT1A9 and human hepatocytes, the mechanism of the altered PK behaviors of morinidazole and its metabolites was investigated. In human hepatocytes, ketoconazole dose dependently inhibited the formation ofN+-glucuronides (50% inhibitory concentration [IC50], 1.5 μM), while rifampin induced the mRNA level of UGT1A9 by 28% and the activity of UGT1A9 by 53%. In conclusion, the effects of rifampin and ketoconazole on the plasma exposures of morinidazole andN+-glucuronide are less than 50%; therefore, rifampin and ketoconazole have little clinical significance in the pharmacokinetics of morinidazole.

2010 ◽  
Vol 54 (9) ◽  
pp. 3878-3883 ◽  
Author(s):  
J. W. C. Alffenaar ◽  
W. A. Nienhuis ◽  
F. de Velde ◽  
A. T. Zuur ◽  
A. M. A. Wessels ◽  
...  

ABSTRACT In a randomized controlled trial in Ghana, treatment of Mycobacterium ulcerans infection with streptomycin (SM)-rifampin (RIF) for 8 weeks was compared with treatment with SM-RIF for 4 weeks followed by treatment with RIF-clarithromycin (CLA) for 4 weeks. The extent of the interaction of RIF and CLA combined on the pharmacokinetics of the two compounds is unknown in this population and was therefore studied in a subset of patients. Patients received CLA at a dose of 7.5 mg/kg of body weight once daily, rounded to the nearest 125 mg. RIF was administered at a dose of 10 mg/kg, rounded to the nearest 150 mg. SM was given at a dose of 15 mg/kg once daily as an intramuscular injection. Plasma samples were drawn at steady state and analyzed by liquid chromatography-tandem mass spectroscopy. Pharmacokinetic parameters were calculated with the MW/Pharm (version 3.60) program. Comedication with CLA resulted in a 60% statistically nonsignificant increase in the area under the plasma concentration-time curve (AUC) for RIF of 25.8 mg·h/liter (interquartile ratio [IQR], 21.7 to 31.5 mg·h/liter), whereas the AUC of RIF was 15.2 mg·h/liter (IQR, 15.0 to 17.5 mg·h/liter) in patients comedicated with SM (P = 0.09). The median AUCs of CLA and 14-hydroxyclarithromycin (14OH-CLA) were 2.9 mg·h/liter (IQR, 1.5 to 3.8 mg·h/liter) and 8.0 mg·h/liter (IQR, 6.7 to 8.6 mg·h/liter), respectively. The median concentration of CLA was above the MIC of M. ulcerans, but that of 14OH-CLA was not. In further clinical studies, a dose of CLA of 7.5 mg/kg twice daily should be used (or with an extended-release formulation, 15 mg/kg should be used) to ensure higher levels of exposure to CLA and an increase in the time above the MIC compared to those achieved with the currently used dose of 7.5 mg/kg once daily.


2001 ◽  
Vol 45 (11) ◽  
pp. 3238-3241 ◽  
Author(s):  
Esteban Ribera ◽  
Leonor Pou ◽  
Antoni Fernandez-Sola ◽  
Francisco Campos ◽  
Rosa M. Lopez ◽  
...  

ABSTRACT To determine whether rifampin reduces concentrations of trimethoprim (TMP) and sulfamethoxazole (SMX) in serum of human immunodeficiency virus (HIV)-infected persons, levels of these agents were determined by high-performance liquid chromatography before and after more than 12 days of standard antituberculosis treatment for 10 patients who had been taking one double-strength tablet of co-trimoxazole once daily for more than 1 month. Statistically significant, 47 and 23% decreases in TMP and SMX mean areas under the concentration-time curve from 0 to 24 h (AUC0–24), respectively, were observed after administration of rifampin.N-Acetyl-SMX profiles without and with rifampin were similar. The steady-state AUC0–24 metabolite/parent drug ratio increased by 32% with rifampin administration. Our study shows that rifampin reduces profiles of TMP and SMX in serum of HIV-infected patients.


2010 ◽  
Vol 54 (1) ◽  
pp. 411-417 ◽  
Author(s):  
David T. Chung ◽  
Cheng-Yuan Tsai ◽  
Shu-Jen Chen ◽  
Li-Wen Chang ◽  
Chi-Hsin R. King ◽  
...  

ABSTRACT Nemonoxacin (TG-873870) is a novel nonfluorinated quinolone with broad-spectrum activities against Gram-positive and Gram-negative aerobic, anaerobic, and atypical pathogens, as well as against methicillin-resistant Staphylococcus aureus, vancomycin-resistant S. aureus, and multiple-resistant bacterial pathogens. We conducted a randomized, double-blind, placebo-controlled, dose-escalating study to ascertain the safety, tolerability, and pharmacokinetics of nemonoxacin. We enrolled 46 healthy volunteers and used a once-daily oral-dosing range of 75 to 1,000 mg for 10 days. Additionally, the food effect was evaluated in subjects in the 500-mg cohort. Nemonoxacin was generally safe and well tolerated, with no significant changes in the clinical laboratory tests or electrocardiograms. Adverse effects, including headache, contact dermatitis, and rash, were mild and resolved spontaneously. Nemonoxacin was rapidly absorbed within 2 h postdosing, and generally, a steady state was reached after 3 days. The maximum plasma concentration and the area under the plasma concentration-time curve were dose proportional over the dosing range. The elimination half-life was approximately 7.5 h and 19.7 h on days 1 and 10, respectively. Approximately 37 to 58% of the drug was excreted in the urine. Food affected the pharmacokinetics, with decreases in the maximum plasma concentration and area under the plasma concentration-time curve of 46% and 27%, respectively. However, the free AUC/MIC90 of nemonoxacin was more than 100 under both the fasting and fed conditions, predicting the efficacy of nemonoxacin against most of the tested pathogens. In conclusion, the results support further clinical investigation of once-daily nemonoxacin administration for antibiotic-sensitive and antibiotic-resistant bacterial infections.


2016 ◽  
Vol 60 (8) ◽  
pp. 4585-4589 ◽  
Author(s):  
Manjunath P. Pai

ABSTRACTTedizolid is a novel oxazolidinone antimicrobial administered in its prodrug form, tedizolid phosphate, as a fixed once-daily dose. The pharmacokinetics of tedizolid has been studied in a relatively small proportion of morbidly obese (body mass index [BMI] of ≥40 kg/m2) adults through population analyses with sparse sampling. The current study compared the intensively sampled plasma pharmacokinetics of tedizolid phosphate and tedizolid in 9 morbidly obese and 9 age-, sex-, and ideal body weight-matched nonobese (BMI, 18.5 to 29.9 kg/m2) healthy adult (18 to 50 years of age) volunteers after administration of a single intravenous dose of tedizolid phosphate. The median (range) weights were 72.6 kg (58.9 to 89.5 kg) and 117 kg (102 to 176 kg) for the mostly female (77.8%) nonobese and morbidly obese adults, respectively. Tedizolid phosphate concentrations were below the limit of quantitation in a majority of subjects after the 2-h time point. The tedizolid median (range) maximum concentration of drug in plasma (Cmax) and area under the concentration-time curve from 0 h to infinity (AUC0–∞) were 2.38 (1.28 to 3.99) mg/liter and 26.3 (18.4 to 43.2) h · mg/liter, respectively, for morbidly obese subjects, and these were nonsignificantly different (P≥ 0.214) from the values for nonobese subjects. Similarly, the volumes of distribution (Vz) (P= 0.110) and clearance (CL) values (P= 0.214) were comparable between groups. Nearly identical (P= 0.953) median tedizolid half-lives of approximately 12 h were observed for both groups. TedizolidVzand CL scaled with body weight, but not proportionately. The small and nonsignificant differences in tedizolid AUC0–∞values between morbidly obese and nonobese subjects suggest that dose modification is not necessary for morbidly obese adults. (This study has been registered at ClinicalTrials.gov under number NCT02342418.)


2018 ◽  
Vol 62 (5) ◽  
Author(s):  
M. A. Zuur ◽  
S. Ghimire ◽  
M. S. Bolhuis ◽  
A. M. A. Wessels ◽  
R. van Altena ◽  
...  

ABSTRACT Ertapenem is a carbapenem antibiotic with activity against Mycobacterium tuberculosis . Dose simulations in a hollow-fiber infection model showed that 2,000 mg once daily is an appropriate dose to be tested in clinical studies. Before using this dose in a phase II study, the aim of this prospective pharmacokinetic study was to confirm the pharmacokinetics of 2,000 mg once daily in tuberculosis (TB) patients. Twelve TB patients received a single intravenous dose of 2,000 mg ertapenem as a 30-min infusion. Blood samples were collected at 0, 0.5, 1, 2, 3, 4, 8, 12, and 24 h postadministration. Drug concentrations were measured using a validated liquid chromatography-tandem mass spectrometry assay. A large interindividual variation in the pharmacokinetics of ertapenem was observed. The median (interquartile range) area under the plasma concentration-time curve to infinity (AUC 0–∞ ) was 2,032 (1,751 to 2,346) mg · h/liter, the intercompartmental clearance (CL 12 ) was 1.941 (0.979 to 2.817) liters/h, and the volume of distribution in the central compartment ( V 1 ) was 1.514 (1.064 to 2.210) liters. A more than dose-proportional increase in AUC was observed compared to results reported for 1,000 mg ertapenem in multidrug-resistant TB patients. Based on a MIC of 1.0 mg/liter, 11 out of 12 patients would have reached the target value of unbound drug exceeding the MIC over 40% of the time ( f 40% T >MIC). In conclusion, this study shows that 2,000 mg ertapenem once daily in TB patients reached the expected f 40% T >MIC for most of the patients, and exploration in a phase 2 study can be advocated.


2010 ◽  
Vol 54 (11) ◽  
pp. 4619-4625 ◽  
Author(s):  
Michael Neely ◽  
Laurent Decosterd ◽  
Aurélie Fayet ◽  
Janice Soo Fern Lee ◽  
Ashley Margol ◽  
...  

ABSTRACT Atazanavir inhibits UDP-glucuronyl-transferase-1A1 (UGT1A1), which metabolizes raltegravir, but the magnitude of steady-state inhibition and role of the UGT1A1 genotype are unknown. Sufficient inhibition could lead to reduced-dose and -cost raltegravir regimens. Nineteen healthy volunteers, age 24 to 51 years, took raltegravir 400 mg twice daily (arm A) and 400 mg plus atazanavir 400 mg once daily (arm B), separated by ≥3 days, in a crossover design. After 1 week on each regimen, raltegravir and raltegravir-glucuronide plasma and urine concentrations were measured by liquid chromatography-tandem mass spectrometry in multiple samples obtained over 12 h (arm A) or 24 h (arm B) and analyzed by noncompartmental methods. UGT1A1 promoter variants were detected with a commercially available kit and published primers. The primary outcome was the ratio of plasma raltegravir C tau, or concentration at the end of the dosing interval, for arm B (24 h) versus arm A (12 h). The arm B-to-arm A geometric mean ratios (95% confidence interval, P value) for plasma raltegravir C tau, area under the concentration-time curve from 0 to 12 h (AUC0-12), and raltegravir-glucuronide/raltegravir AUC0-12 were 0.38 (0.22 to 0.65, 0.001), 1.32 (0.62 to 2.81, 0.45), and 0.47 (0.38 to 0.59, <0.001), respectively. Nine volunteers were heterozygous and one was homozygous for a UGT1A1 reduction-of-function allele, but these were not associated with metabolite formation. Although atazanavir significantly reduced the formation of the glucuronide metabolite, its steady-state boosting of plasma raltegravir did not render the C tau with a once-daily raltegravir dose of 400 mg similar to the C tau with the standard twice-daily dose. UGT1A1 promoter variants did not significantly influence this interaction.


2012 ◽  
Vol 56 (5) ◽  
pp. 2627-2634 ◽  
Author(s):  
Seth T. Housman ◽  
J. Samuel Pope ◽  
John Russomanno ◽  
Edward Salerno ◽  
Eric Shore ◽  
...  

ABSTRACTThis study assessed the pulmonary disposition of tedizolid, an oxazolidinone, in adult volunteers receiving 200 mg of the prodrug tedizolid phosphate orally every 24 h for 3 days to steady state. Plasma samples were collected over the dosing interval, and participants were randomized to undergo bronchoalveolar lavage (BAL) at 2, 6, 12, or 24 h after the last dose. Drug concentrations in plasma, BAL fluid, and alveolar macrophages (AM) were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and the urea correction method was used to calculate epithelial lining fluid (ELF) concentrations. Pharmacokinetic parameters were estimated by noncompartmental methods followed by compartmental population pharmacokinetics. Penetration was calculated as the area under the concentration-time curve during the dosing interval (AUC0–24) for ELF and AM relative to the free AUC0–24(fAUC0–24) in plasma. The half-life and volume of distribution in plasma were 9.23 ± 2.04 h and 108.25 ± 20.53 liters (means ± standard deviations), respectively. Total AUC0–24in plasma was 25.13 ± 5.78 μg · h/ml. Protein binding was 89.44% ± 1.58%, resulting in a meanfAUC0–24of 2.65 ± 0.72 μg · h/ml in plasma. Mean concentrations (μg/ml) at 2, 6, 12, and 24 h were 9.05 ± 3.83, 4.45 ± 2.18, 5.62 ± 1.99, and 1.33 ± 0.59 in ELF and 3.67 ± 1.02, 4.38 ± 2.18, 1.42 ± 0.63, and 1.04 ± 0.52 in AM. ELF and AM penetration ratios were 41.2 and 20.0. The mean ELF penetration ratio after population analyses was 39.7. This study demonstrates that tedizolid penetrates into ELF and AM to levels approximately 40-fold and 20-fold, respectively, higher than free-drug exposures in plasma.


2011 ◽  
Vol 56 (3) ◽  
pp. 1427-1433 ◽  
Author(s):  
Laura J. Else ◽  
Akil Jackson ◽  
Rebekah Puls ◽  
Andrew Hill ◽  
Paul Fahey ◽  
...  

ABSTRACTThere is interest in evaluating the efficacy of lower doses of certain antiretrovirals for clinical care. We determined here the bioequivalence of plasma lamivudine (3TC) and intracellular 3TC-triphosphate (3TC-TP) concentrations after the administration of two different doses. ENCORE 2 was a randomized crossover study. Subjects received 3TC at 300 and 150 mg once daily for 10 days (arm 1;n= 13) or vice versa (arm 2;n= 11), separated by a 10-day washout. Pharmacokinetic (PK) profiles (0 to 24 h) were assessed on days 10 and 30. Plasma 3TC and 3TC-TP levels in peripheral blood mononuclear cells were quantified by high-performance liquid chromatography-tandem mass spectrometry. Within-subject changes in PK parameters (the area under the concentration-time curve from 0 to 24 h [AUC0-24], the trough concentration of drug in plasma at 24 h [C24], and the maximum concentration of drug in plasma [Cmax]) were evaluated by determining the geometric mean ratios (GMRs) adjusted for study arm, period, and intra-individual variation. Regimens were considered bioequivalent if the 90% confidence interval (90% CI) fell within the range of 0.8 to 1.25. A total of 24 subjects completed the study. The GM (90% CI) 3TC AUC0-24), expressed as ng·h/ml, for the 300- and 150-mg doses were 8,354 (7,609 to 9,172) and 4,773 (4,408 to 5,169), respectively. Bioequivalence in 3TC PK following the administration of 300 and 150 mg was not demonstrated: the GMRs for AUC0-24,C24, andCmaxwere 0.57 (0.55 to 0.60), 0.63 (0.59 to 0.67), and 0.56 (0.53 to 0.60), respectively. The GM (90% CI) 3TC-TP AUC0-24values (pmol·h/106cells) for the 300- and 150-mg doses were 59.5 (51.8 to 68.3) and 44.0 (38.0 to 51.0), respectively. Bioequivalence in 3TC-TP PK following the administration of 300 and 150 mg was not demonstrated: the GMRs for AUC0-24,C24, andCmaxwere 0.73 (0.64 to 0.83), 0.82 (0.68 to 0.99), and 0.70 (0.61 to 0.82), respectively. We found that 3TC at 150 mg is not bioequivalent to the standard regimen of 300 mg, indicating that saturation of cytosine phosphorylation pathways is not achieved at a dose of 150 mg.


2021 ◽  
Author(s):  
Peng He ◽  
Xin Li ◽  
Xiaohan Guo ◽  
Xingchen Bian ◽  
Meiqing Feng

LYSC98 is a vancomycin derivative used for gram-positive bacterial infections therapy. We reported the pharmacokinetic/pharmacodynamic (PK/PD) targets of LYSC98 against Staphylococcus aureus using a murine thigh infection model. Three Staphylococcus aureus strains were utilized. Single-dose plasma pharmacokinetics of LYSC98 were determined in infected mice after the tail vein injection of 2, 4, and 8mg/kg. The results showed maximum plasma concentration (Cmax) 11466.67 -48866.67 ng/mL, area under the concentration-time curve from 0 to 24 h(AUC0-24) 14788.42 -91885.93 ng/mL·h, and elimination half-life(T1/2) 1.70-2.64 h, respectively. The Cmax (R2 0.9994) and AUC0-24 (R2 0.981) were positively correlated with the dose of LYSC98 in the range of 2-8 mg/kg. Dose fractionation studies using total doses of 2 to 8 mg/kg administered with q6h, q8h, q12h, and q24h were performed to evaluate the correlation of different PK/PD indices with efficacy. Sigmoid model analysis showed Cmax/MIC (R2 0.8941) was the best PK/PD index to predict the efficacy of LYSC98. In the dose ranging studies, two Methicillin-resistant Staphylococcus aureus (MRSA) clinical strains were used to infect the mice and 2-fold-increasing doses (1 to 16 mg/kg) of LYSC98 were administered. The magnitude of LYSC98 Cmax/MIC associated with net stasis, 1, 2, 3 and 4 - log10 kill were 5.78, 8.17, 11.14, 15.85 and 30.58, respectively. The results of this study showed LYSC98 a promising antibiotic with in vivo potency against MRSA, and will help in the dose design of phase one study for LYSC98.


2012 ◽  
Vol 56 (10) ◽  
pp. 5076-5081 ◽  
Author(s):  
Keith A. Rodvold ◽  
Mark H. Gotfried ◽  
J. Gordon Still ◽  
Kay Clark ◽  
Prabhavathi Fernandes

ABSTRACTThe steady-state concentrations of solithromycin in plasma were compared with concomitant concentrations in epithelial lining fluid (ELF) and alveolar macrophages (AM) obtained from intrapulmonary samples during bronchoscopy and bronchoalveolar lavage (BAL) in 30 healthy adult subjects. Subjects received oral solithromycin at 400 mg once daily for five consecutive days. Bronchoscopy and BAL were carried out once in each subject at either 3, 6, 9, 12, or 24 h after the last administered dose of solithromycin. Drug concentrations in plasma, ELF, and AM were assayed by a high-performance liquid chromatography-tandem mass spectrometry method. Solithromycin was concentrated extensively in ELF (range of mean [± standard deviation] concentrations, 1.02 ± 0.83 to 7.58 ± 6.69 mg/liter) and AM (25.9 ± 20.3 to 101.7 ± 52.6 mg/liter) in comparison with simultaneous plasma concentrations (0.086 ± 0.070 to 0.730 ± 0.692 mg/liter). The values for the area under the concentration-time curve from 0 to 24 h (AUC0–24values) based on mean and median ELF concentrations were 80.3 and 63.2 mg · h/liter, respectively. The ratio of ELF to plasma concentrations based on the mean and median AUC0–24values were 10.3 and 10.0, respectively. The AUC0–24values based on mean and median concentrations in AM were 1,498 and 1,282 mg · h/L, respectively. The ratio of AM to plasma concentrations based on the mean and median AUC0–24values were 193 and 202, respectively. Once-daily oral dosing of solithromycin at 400 mg produced steady-state concentrations that were significantly (P< 0.05) higher in ELF (2.4 to 28.6 times) and AM (44 to 515 times) than simultaneous plasma concentrations throughout the 24-h period after 5 days of solithromycin administration.


Sign in / Sign up

Export Citation Format

Share Document