scholarly journals Significant Reduction of Brain Cysts Caused by Toxoplasma gondii after Treatment with Spiramycin Coadministered with Metronidazole in a Mouse Model of Chronic Toxoplasmosis

2012 ◽  
Vol 56 (4) ◽  
pp. 1762-1768 ◽  
Author(s):  
Wai Kit Chew ◽  
Ignacio Segarra ◽  
Stephen Ambu ◽  
Joon Wah Mak

ABSTRACTToxoplasma gondiiis a parasite that generates latent cysts in the brain; reactivation of these cysts may lead to fatal toxoplasmic encephalitis, for which treatment remains unsuccessful. We assessed spiramycin pharmacokinetics coadministered with metronidazole, the eradication of brain cysts and thein vitroreactivation. Male BALB/c mice were fed 1,000 tachyzoites orally to develop chronic toxoplasmosis. Four weeks later, infected mice underwent different treatments: (i) infected untreated mice (n= 9), which received vehicle only; (ii) a spiramycin-only group (n= 9), 400 mg/kg daily for 7 days; (iii) a metronidazole-only group (n= 9), 500 mg/kg daily for 7 days; and (iv) a combination group (n= 9), which received both spiramycin (400 mg/kg) and metronidazole (500 mg/kg) daily for 7 days. An uninfected control group (n= 10) was administered vehicle only. After treatment, the brain cysts were counted, brain homogenates were cultured in confluent Vero cells, and cysts and tachyzoites were counted after 1 week. Separately, pharmacokinetic profiles (plasma and brain) were assessed after a single dose of spiramycin (400 mg/kg), metronidazole (500 mg/kg), or both. Metronidazole treatment increased the brain spiramycin area under the concentration-time curve from 0 h to ∞ (AUC0–∞) by 67% without affecting its plasma disposition. Metronidazole plasma and brain AUC0–∞values were reduced 9 and 62%, respectively, after spiramycin coadministration. Enhanced spiramycin brain exposure after coadministration reduced brain cysts 15-fold (79 ± 23 for the combination treatment versus 1,198 ± 153 for the untreated control group [P< 0.05]) and 10-fold versus the spiramycin-only group (768 ± 125). Metronidazole alone showed no effect (1,028 ± 149). Tachyzoites were absent in the brain. Spiramycin reducedin vitroreactivation. Metronidazole increased spiramycin brain penetration, causing a significant reduction ofT. gondiibrain cysts, with potential clinical translatability for chronic toxoplasmosis treatment.

2017 ◽  
Vol 61 (11) ◽  
Author(s):  
Elizabeth A. Lakota ◽  
Justin C. Bader ◽  
Voon Ong ◽  
Ken Bartizal ◽  
Lynn Miesel ◽  
...  

ABSTRACT CD101 is a novel echinocandin with concentration-dependent fungicidal activity in vitro and a long half-life (∼133 h in humans, ∼70 to 80 h in mice). Given these characteristics, it is likely that the shape of the CD101 exposure (i.e., the time course of CD101 concentrations) influences efficacy. To test this hypothesis, doses which produce the same total area under the concentration-time curve (AUC) were administered to groups of neutropenic ICR mice infected with Candida albicans R303 using three different schedules. A total CD101 dose of 2 mg/kg was administered as a single intravenous (i.v.) dose or in equal divided doses of either 1 mg/kg twice weekly or 0.29 mg/kg/day over 7 days. The studies were performed using a murine disseminated candidiasis model. Animals were euthanized at 168 h following the start of treatment. Fungi grew well in the no-treatment control group and showed variable changes in fungal density in the treatment groups. When the CD101 AUC from 0 to 168 h (AUC0–168) was administered as a single dose, a >2 log10 CFU reduction from the baseline at 168 h was observed. When twice-weekly and daily regimens with similar AUC values were administered, net fungal stasis and a >1 log10 CFU increase from the baseline were observed, respectively. These data support the hypothesis that the shape of the CD101 AUC influences efficacy. Thus, CD101 administered once per week demonstrated a greater degree of fungal killing than the same dose divided into twice-weekly or daily regimens.


2011 ◽  
Vol 79 (8) ◽  
pp. 3046-3052 ◽  
Author(s):  
Isabel Dellacasa-Lindberg ◽  
Jonas M. Fuks ◽  
Romanico B. G. Arrighi ◽  
Henrik Lambert ◽  
Robert P. A. Wallin ◽  
...  

ABSTRACTDisseminated toxoplasmosis in the central nervous system (CNS) is often accompanied by a lethal outcome. Studies with murine models of infection have focused on the role of systemic immunity in control of toxoplasmic encephalitis, while knowledge remains limited on the contributions of resident cells with immune functions in the CNS. In this study, the role of glial cells was addressed in the setting of recrudescentToxoplasmainfection in mice. Activated astrocytes and microglia were observed in the close vicinity of foci with replicating parasitesin situin the brain parenchyma.Toxoplasma gondiitachyzoites were allowed to infect primary microglia and astrocytesin vitro. Microglia were permissive to parasite replication, and infected microglia readily transmigrated across transwell membranes and cell monolayers. Thus, infected microglia, but not astrocytes, exhibited a hypermotility phenotype reminiscent of that recently described for infected dendritic cells. In contrast to gamma interferon-activated microglia,Toxoplasma-infected microglia did not upregulate major histocompatibility complex (MHC) class II molecules and the costimulatory molecule CD86. YetToxoplasma-infected microglia and astrocytes exhibited increased sensitivity to T cell-mediated killing, leading to rapid parasite transfer to effector T cellsin vitro. We hypothesize that glial cells and T cells, besides their role in triggering antiparasite immunity, may also act as “Trojan horses,” paradoxically facilitating dissemination ofToxoplasmawithin the CNS. To our knowledge, this constitutes the first report of migratory activation of a resident CNS cell by an intracellular parasite.


2015 ◽  
Vol 59 (11) ◽  
pp. 6939-6945 ◽  
Author(s):  
Imaan Benmerzouga ◽  
Lisa A. Checkley ◽  
Michael T. Ferdig ◽  
Gustavo Arrizabalaga ◽  
Ronald C. Wek ◽  
...  

ABSTRACTToxoplasma gondiiis a protozoan parasite that persists as a chronic infection.Toxoplasmaevades immunity by forming tissue cysts, which reactivate to cause life-threatening disease during immune suppression. There is an urgent need to identify drugs capable of targeting these latent tissue cysts, which tend to form in the brain. We previously showed that translational control is critical during infections with both replicative and latent forms ofToxoplasma. Here we report that guanabenz, an FDA-approved drug that interferes with translational control, has antiparasitic activity against replicative stages ofToxoplasmaand the related apicomplexan parasitePlasmodium falciparum(a malaria agent). We also found that inhibition of translational control interfered with tissue cyst biologyin vitro.Toxoplasmabradyzoites present in these abnormal cysts were diminished and misconfigured, surrounded by empty space not seen in normal cysts. These findings prompted analysis of the efficacy of guanabenzin vivoby using established mouse models of acute and chronic toxoplasmosis. In addition to protecting mice from lethal doses ofToxoplasma, guanabenz has a remarkable ability to reduce the number of brain cysts in chronically infected mice. Our findings suggest that guanabenz can be repurposed into an effective antiparasitic with a unique ability to reduce tissue cysts in the brain.


2014 ◽  
Vol 82 (7) ◽  
pp. 2826-2839 ◽  
Author(s):  
Qila Sa ◽  
Eri Ochiai ◽  
Tomoko Sengoku ◽  
Melinda E. Wilson ◽  
Morgan Brogli ◽  
...  

ABSTRACTReactivation of chronic infection withToxoplasma gondiican cause life-threatening toxoplasmic encephalitis in immunocompromised individuals. We examined the role of VCAM-1/α4β1 integrin interaction in T cell recruitment to prevent reactivation of the infection in the brain. SCID mice were infected and treated with sulfadiazine to establish a chronic infection. VCAM-1 and ICAM-1 were the endothelial adhesion molecules detected on cerebral vessels of the infected SCID and wild-type animals. Immune T cells from infected wild-type mice were treated with anti-α4 integrin or control antibodies and transferred into infected SCID or nude mice, and the animals received the same antibody every other day. Three days later, sulfadiazine was discontinued to initiate reactivation of infection. Expression of mRNAs for CD3δ, CD4, CD8β, gamma interferon (IFN-γ), and inducible nitric oxide synthase (NOS2) (an effector molecule to inhibitT. gondiigrowth) and the numbers of CD4+and CD8+T cells in the brain were significantly less in mice treated with anti-α4 integrin antibody than in those treated with control antibody at 3 days after sulfadiazine discontinuation. At 6 days after sulfadiazine discontinuation, cerebral tachyzoite-specific SAG1 mRNA levels and numbers of inflammatory foci associated with tachyzoites were markedly greater in anti-α4 integrin antibody-treated than in control antibody-treated animals, even though IFN-γ and NOS2 mRNA levels were higher in the former than in the latter. These results indicate that VCAM-1/α4β1 integrin interaction is crucial for prompt recruitment of immune T cells and induction of IFN-γ-mediated protective immune responses during the early stage of reactivation of chronicT. gondiiinfection to control tachyzoite growth.


mSphere ◽  
2020 ◽  
Vol 5 (2) ◽  
Author(s):  
Rebekah B. Guevara ◽  
Barbara A. Fox ◽  
David J. Bzik

ABSTRACT The glycosylated mucin domain of the Toxoplasma gondii cyst wall glycoprotein CST1 is heavily stained by Dolichos biflorus agglutinin, a lectin that binds to N-acetylgalactosamine. The cyst wall is also heavily stained by the chitin binding lectin succinylated wheat germ agglutinin (s-WGA), which selectively binds to N-acetylglucosamine-decorated structures. Here, we tracked the localization of N-acetylglucosamine-decorated structures that bind to s-WGA in immature and mature in vitro cysts. s-WGA localization was observed at the cyst periphery 6 h after the differentiation of the tachyzoite-stage parasitophorous vacuole. By day 1 and at all later times after differentiation, s-WGA was localized in a continuous staining pattern at the cyst wall. Coinciding with the maturation of the cyst matrix by day 3 of cyst development, s-WGA also localized in a continuous matrix pattern inside the cyst. s-WGA localized in both the outer and inner layer regions of the cyst wall and in a continuous matrix pattern inside mature 7- and 10-day-old cysts. In addition, s-WGA colocalized in the cyst wall with CST1, suggesting that N-acetylglucosamine- and N-acetylgalactosamine-decorated molecules colocalized in the cyst wall. In contrast to CST1, GRA4, and GRA6, the relative accumulation of the molecules that bind s-WGA in the cyst wall was not dependent on the expression of GRA2. Our results suggest that GRA2-dependent and GRA2-independent mechanisms regulate the trafficking and accumulation of glycosylated molecules that colocalize in the cyst wall. IMPORTANCE Chronic Toxoplasma gondii infection is maintained in the central nervous system by thick-walled cysts. If host immunity wanes, cysts recrudesce and cause severe and often lethal toxoplasmic encephalitis. Currently, there are no therapies to eliminate cysts, and little biological information is available regarding cyst structure(s). Here, we investigated cyst wall molecules recognized by succinylated wheat germ agglutinin (s-WGA), a lectin that specifically binds to N-acetylglucosamine-decorated structures. N-Acetylglucosamine regulates cell signaling and plays structural roles at the cell surface in many organisms. The cyst wall and cyst matrix were heavily stained by s-WGA in mature cysts and were differentially stained during cyst development. The relative accumulation of molecules that bind to s-WGA in the cyst wall was not dependent on the expression of GRA2. Our findings suggest that glycosylated cyst wall molecules gain access to the cyst wall via GRA2-dependent and GRA2-independent mechanisms and colocalize in the cyst wall.


2017 ◽  
Vol 62 (2) ◽  
Author(s):  
Jérémy Spalenka ◽  
Sandie Escotte-Binet ◽  
Ali Bakiri ◽  
Jane Hubert ◽  
Jean-Hugues Renault ◽  
...  

ABSTRACT Toxoplasma gondii is a cosmopolitan protozoan parasite which affects approximately 30% of the population worldwide. The drugs currently used against toxoplasmosis are few in number and show several limitations, such as drug intolerance, poor bioavailability, or drug resistance mechanism developed by the parasite. Thus, it is important to find new compounds able to inhibit parasite invasion or proliferation. In this study, the 400 compounds of the open-access Pathogen Box, provided by the Medicines for Malaria Venture (MMV) foundation, were screened for their anti-Toxoplasma gondii activity. A preliminary in vitro screening performed over 72 h by an enzyme-linked immunosorbent assay (ELISA) revealed 15 interesting compounds that were effective against T. gondii at 1 μM. Their cytotoxicity was estimated on Vero cells, and their 50% inhibitory concentrations (IC50) were further calculated. As a result, eight anti-Toxoplasma gondii compounds with an IC50 of less than 2 μM and a selectivity index (SI) value of greater than 4 were identified. The most active was MMV675968, showing an IC50 of 0.02 μM and a selectivity index value equal to 275. Two other compounds, MMV689480 and MMV687807, also showed a good activity against T. gondii, with IC50s of 0.10 μM (SI of 86.6) and 0.15 μM (SI of 11.3), respectively. Structure-activity relationships for the eight selected compounds also were discussed on the basis of fingerprinting similarity measurements using the Tanimoto method. The anti-Toxoplasma gondii compounds highlighted here represent potential candidates for the development of new drugs that could be used against toxoplasmosis.


2011 ◽  
Vol 56 (3) ◽  
pp. 1182-1189 ◽  
Author(s):  
Xiaohua Zhu ◽  
Trupti Pandharkar ◽  
Karl Werbovetz

ABSTRACTA previous screen of ∼200,000 compounds from the PubChem database identified 70 compounds possessing 50% effective concentrations (EC50s) below 1 μM againstLeishmania majorpromastigotes that were not toxic to mammalian epithelial cancer cells at this concentration (E. Sharlow et al., PLoS Negl. Trop. Dis. 3:e540, 2009). Based on availability and chemical exclusion criteria, 31 of these compounds were purchased from commercial suppliers and evaluated forin vitroactivity against intracellularL. donovaniandL. amazonensisparasites. Benzothiazole cyanine compounds (PubChem 16196319 and 16196223) displayed potent activity against intracellular amastigotes, prompting a search for commercially available compounds that were structurally related. Pubchem 123859 (the cyanine dye thiazole orange) showed exceptionally potent activity against intracellularL. donovani in vitro(50% inhibitory concentration [IC50] = 21 ± 12 nM) and low cytotoxicity against Vero cells (IC50= 7,800 ± 200 nM). Administration of 123859 and 16196319 at a dose of 1 mg/kg of body weight intraperitoneally (i.p.) daily for 5 days resulted in 44% ± 4% and 42% ± 3% suppression of liver parasitemia inL. donovani-infected BALB/c mice, respectively, compared to the untreated control group (the reductions in liver parasitemia were 30% ± 5% and 27% ± 4%, respectively, compared to the (2-hydroxypropyl)-β-cyclodextrin solution (HPβCD) vehicle control, which itself displayed some antileishmanial activity). Benzothiazole-containing cyanine dyes are thus potential lead compounds for the discovery of novel antileishmanial agents.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 386
Author(s):  
Tung-Hu Tsai ◽  
Yu-Jen Chen ◽  
Li-Ying Wang ◽  
Chen-Hsi Hsieh

This study was performed to evaluate the interaction between conventional or high-dose radiotherapy (RT) and the pharmacokinetics (PK) of regorafenib in concurrent or sequential regimens for the treatment of hepatocellular carcinoma. Concurrent and sequential in vitro and in vivo studies of irradiation and regorafenib were designed. The interactions of RT and regorafenib in vitro were examined in the human hepatoma Huh-7, HA22T and Hep G2 cell lines. The RT–PK phenomenon and biodistribution of regorafenib under RT were confirmed in a free-moving rat model. Regorafenib inhibited the viability of Huh-7 cells in a dose-dependent manner. Apoptosis in Huh-7 cells was enhanced by RT followed by regorafenib treatment. In the concurrent regimen, RT decreased the area under the concentration versus time curve (AUC)regorafenib by 74% (p = 0.001) in the RT2 Gy × 3 fraction (f’x) group and by 69% (p = 0.001) in the RT9 Gy × 3 f’x group. The AUCregorafenib was increased by 182.8% (p = 0.011) in the sequential RT2Gy × 1 f’x group and by 213.2% (p = 0.016) in the sequential RT9Gy × 1 f’x group. Both concurrent regimens, RT2Gy × 3 f’x and RT9Gy × 3 f’x, clearly decreased the biodistribution of regorafenib in the heart, liver, lung, spleen and kidneys, compared to the control (regorafenib × 3 d) group. The concurrent regimens, both RT2Gy × 3 f’x and RT9Gy × 3 f’x, significantly decreased the biodistribution of regorafenib, compared with the control group. The PK of regorafenib can be modulated both by off-target irradiation and stereotactic body radiation therapy (SBRT).


1979 ◽  
Vol 51 (5) ◽  
pp. 587-596 ◽  
Author(s):  
Albert N. Martins ◽  
Ralph E. Severance ◽  
James M. Henry ◽  
Thomas F. Doyle

✓ The authors have designed an experiment to detect a hitherto unrecognized interaction between high doses of the glucocorticoid, dexamethasone, and brain irradiation. Eighteen juvenile male rhesus monkeys received 1800 rads to the whole brain in 8.5 minutes. For 1½ days before and 10½ days after the irradiation, nine animals received approximately 2.9 mg/kg/day of dexamethasone intramuscularly in addition to irradiation, while the remaining nine animals served as the control group and received saline. All animals eventually developed a progressive neurological syndrome, and died of delayed radiation necrosis of the brain. The two groups were compared with regard to latency to onset of clinical signs, survival time, and number, distribution, and location of lesions of radionecrosis. Large doses of dexamethasone did not alter the susceptibility of the primate brain to delayed radiation necrosis. Detailed morphological study of the radionecrotic lesions supports the hypothesis that most, if not all, of the lesions develop as the consequence of injury to blood vessels.


2018 ◽  
Vol 87 (2) ◽  
Author(s):  
Isra Alsaady ◽  
Ellen Tedford ◽  
Mohammad Alsaad ◽  
Greg Bristow ◽  
Shivali Kohli ◽  
...  

ABSTRACT Toxoplasma gondii is associated with physiological effects in the host. Dysregulation of catecholamines in the central nervous system has previously been observed in chronically infected animals. In the study described here, the noradrenergic system was found to be suppressed with decreased levels of norepinephrine (NE) in brains of infected animals and in infected human and rat neural cells in vitro. The mechanism responsible for the NE suppression was found to be downregulation of dopamine β-hydroxylase (DBH) gene expression, encoding the enzyme that synthesizes norepinephrine from dopamine, with downregulation observed in vitro and in infected brain tissue, particularly in the dorsal locus coeruleus/pons region. The downregulation was sex specific, with males expressing reduced DBH mRNA levels whereas females were unchanged. Rather, DBH expression correlated with estrogen receptor in the female rat brains for this estrogen-regulated gene. DBH silencing was not a general response of neurons to infection, as human cytomegalovirus did not downregulate DBH expression. The noradrenergic-linked behaviors of sociability and arousal were altered in chronically infected animals, with a high correlation between DBH expression and infection intensity. A decrease in DBH expression in noradrenergic neurons can elevate dopamine levels, which provides a possible explanation for mixed observations of changes in this neurotransmitter with infection. Decreased NE is consistent with the loss of coordination and motor impairments associated with toxoplasmosis. Further, the altered norepinephrine synthesis observed here may, in part, explain behavioral effects of infection and associations with mental illness.


Sign in / Sign up

Export Citation Format

Share Document