scholarly journals Epidemiological Cutoff Values for Azoles and Aspergillus fumigatus Based on a Novel Mathematical Approach Incorporatingcyp51ASequence Analysis

2012 ◽  
Vol 56 (5) ◽  
pp. 2524-2529 ◽  
Author(s):  
J. Meletiadis ◽  
E. Mavridou ◽  
W. J. G. Melchers ◽  
J. W. Mouton ◽  
P. E. Verweij

ABSTRACTEpidemiological cutoff values (ECV) are commonly used to separate wild-type isolates from isolates with reduced susceptibility to antifungal drugs, thus setting the foundation for establishing clinical breakpoints forAspergillus fumigatus. However, ECVs are usually determined by eye, a method which lacks objectivity, sensitivity, and statistical robustness and may be difficult, in particular, for extended and complex MIC distributions. We therefore describe and evaluate a statistical method of MIC distribution analysis for posaconazole, itraconazole, and voriconazole for 296A. fumigatusisolates utilizing nonlinear regression analysis, the normal plot technique, and recursive partitioning analysis incorporatingcyp51Asequence data. MICs were determined by using the CLSI M38–A2 protocol (CLSI, CLSI document M38–A2, 2008) after incubation of the isolates for 48 h and were transformed into log2MICs. We found a wide distribution of MICs of all azoles, some ranging from 0.02 to 128 mg/liter, with median MICs of 32 mg/liter for itraconazole, 4 mg/liter for voriconazole, and 0.5 mg/liter for posaconazole. Of the isolates, 65% (192 of 296) had mutations in thecyp51Agene, and the majority of the mutants (90%) harbored tandem repeats in the promoter region combined with mutations in thecyp51Acoding region. MIC distributions deviated significantly from normal distribution (D'Agostino-Pearson omnibus normality testPvalue, <0.001), and they were better described with a model of the sum of two Gaussian distributions (R2, 0.91 to 0.96). The normal plot technique revealed a mixture of two populations of MICs separated by MICs of 1 mg/liter for itraconazole, 1 mg/liter for voriconazole, and 0.125 mg/liter for posaconazole. Recursive partitioning analysis confirmed these ECVs, since the proportions of isolates harboringcyp51Amutations associated with azole resistance were less than 20%, 20 to 30%, and >70% when the MICs were lower than, equal to, and higher than the above-mentioned ECVs, respectively.

mSphere ◽  
2019 ◽  
Vol 4 (5) ◽  
Author(s):  
Suresh Ambati ◽  
Emma C. Ellis ◽  
Jianfeng Lin ◽  
Xiaorong Lin ◽  
Zachary A. Lewis ◽  
...  

ABSTRACT Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus cause life-threatening candidiasis, cryptococcosis, and aspergillosis, resulting in several hundred thousand deaths annually. The patients at the greatest risk of developing these life-threatening invasive fungal infections have weakened immune systems. The vulnerable population is increasing due to rising numbers of immunocompromised individuals as a result of HIV infection or immunosuppressed individuals receiving anticancer therapies and/or stem cell or organ transplants. While patients are treated with antifungals such as amphotericin B, all antifungals have serious limitations due to lack of sufficient fungicidal effect and/or host toxicity. Even with treatment, 1-year survival rates are low. We explored methods of increasing drug effectiveness by designing fungicide-loaded liposomes specifically targeted to fungal cells. Most pathogenic fungi are encased in cell walls and exopolysaccharide matrices rich in mannans. Dectin-2 is a mammalian innate immune membrane receptor that binds as a dimer to mannans and signals fungal infection. We coated amphotericin-loaded liposomes with monomers of Dectin-2’s mannan-binding domain, sDectin-2. sDectin monomers were free to float in the lipid membrane and form dimers that bind mannan substrates. sDectin-2-coated liposomes bound orders of magnitude more efficiently to the extracellular matrices of several developmental stages of C. albicans, C. neoformans, and A. fumigatus than untargeted control liposomes. Dectin-2-coated amphotericin B-loaded liposomes reduced the growth and viability of all three species more than an order of magnitude more efficiently than untargeted control liposomes and dramatically decreased the effective dose. Future efforts focus on examining pan-antifungal targeted liposomal drugs in animal models of fungal diseases. IMPORTANCE Invasive fungal diseases caused by Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus have mortality rates ranging from 10 to 95%. Individual patient costs may exceed $100,000 in the United States. All antifungals in current use have serious limitations due to host toxicity and/or insufficient fungal cell killing that results in recurrent infections. Few new antifungal drugs have been introduced in the last 2 decades. Hence, there is a critical need for improved antifungal therapeutics. By targeting antifungal-loaded liposomes to α-mannans in the extracellular matrices secreted by these fungi, we dramatically reduced the effective dose of drug. Dectin-2-coated liposomes loaded with amphotericin B bound 50- to 150-fold more strongly to C. albicans, C. neoformans, and A. fumigatus than untargeted liposomes and killed these fungi more than an order of magnitude more efficiently. Targeting drug-loaded liposomes specifically to fungal cells has the potential to greatly enhance the efficacy of most antifungal drugs.


2017 ◽  
Vol 61 (12) ◽  
Author(s):  
L. Bernal-Martínez ◽  
H. Gil ◽  
O. Rivero-Menéndez ◽  
S. Gago ◽  
M. Cuenca-Estrella ◽  
...  

ABSTRACT The global emergence of azole-resistant Aspergillus fumigatus strains is a growing public health concern. Different patterns of azole resistance are linked to mutations in cyp51A. Therefore, accurate characterization of the mechanisms underlying azole resistance is critical to guide selection of the most appropriate antifungal agent for patients with aspergillosis. This study describes a new sequencing-free molecular screening tool for early detection of the most frequent mutations known to be associated with azole resistance in A. fumigatus. PCRs targeting cyp51A mutations at positions G54, Y121, G448, and M220 and targeting different tandem repeats (TRs) in the promoter region were designed. All PCRs were performed simultaneously, using the same cycling conditions. Amplicons were then distinguished using a high-resolution melting assay. For standardization, 30 well-characterized azole-resistant A. fumigatus strains were used, yielding melting curve clusters for different resistance mechanisms for each target and allowing detection of the most frequent azole resistance mutations, i.e., G54E, G54V, G54R, G54W, Y121F, M220V, M220I, M220T, M220K, and G448S, and the tandem repeats TR34, TR46, and TR53. Validation of the method was performed using a blind panel of 80 A. fumigatus azole-susceptible or azole-resistant strains. All strains included in the blind panel were properly classified as susceptible or resistant with the developed method. The implementation of this screening method can reduce the time needed for the detection of azole-resistant A. fumigatus isolates and therefore facilitate selection of the best antifungal therapy in patients with aspergillosis.


mBio ◽  
2019 ◽  
Vol 10 (2) ◽  
Author(s):  
Adriana Oliveira Manfiolli ◽  
Filipe Silva Siqueira ◽  
Thaila Fernanda dos Reis ◽  
Patrick Van Dijck ◽  
Sanne Schrevens ◽  
...  

ABSTRACT The pathogenic fungus Aspergillus fumigatus is able to adapt to extremely variable environmental conditions. The A. fumigatus genome contains four genes coding for mitogen-activated protein kinases (MAPKs), which are important regulatory knots involved in diverse cellular responses. From a clinical perspective, MAPK activity has been connected to salvage pathways, which can determine the failure of effective treatment of invasive mycoses using antifungal drugs. Here, we report the characterization of the Saccharomyces cerevisiae Fus3 ortholog in A. fumigatus, designated MpkB. We demonstrate that MpkB is important for conidiation and that its deletion induces a copious increase of dihydroxynaphthalene (DHN)-melanin production. Simultaneous deletion of mpkB and mpkA, the latter related to maintenance of the cell wall integrity, normalized DHN-melanin production. Localization studies revealed that MpkB translocates into the nuclei when A. fumigatus germlings are exposed to caspofungin stress, and this is dependent on the cross-talk interaction with MpkA. Additionally, DHN-melanin formation was also increased after deletion of genes coding for the Gα protein GpaA and for the G protein-coupled receptor GprM. Yeast two-hybrid and coimmunoprecipitation assays confirmed that GpaA and GprM interact, suggesting their role in the MpkB signaling cascade. IMPORTANCE Aspergillus fumigatus is the most important airborne human pathogenic fungus, causing thousands of deaths per year. Its lethality is due to late and often inaccurate diagnosis and the lack of efficient therapeutics. The failure of efficient prophylaxis and therapy is based on the ability of this pathogen to activate numerous salvage pathways that are capable of overcoming the different drug-derived stresses. A major role in the protection of A. fumigatus is played by melanins. Melanins are cell wall-associated macromolecules classified as virulence determinants. The understanding of the various signaling pathways acting in this organism can be used to elucidate the mechanism beyond melanin production and help to identify ideal drug targets.


2012 ◽  
Vol 57 (3) ◽  
pp. 1275-1282 ◽  
Author(s):  
Francesca Bugli ◽  
Brunella Posteraro ◽  
Massimiliano Papi ◽  
Riccardo Torelli ◽  
Alessandro Maiorana ◽  
...  

ABSTRACTAspergillus fumigatusbiofilms represent a problematic clinical entity, especially because of their recalcitrance to antifungal drugs, which poses a number of therapeutic implications for invasive aspergillosis, the most difficult-to-treatAspergillus-related disease. While the antibiofilm activities of amphotericin B (AMB) deoxycholate and its lipid formulations (e.g., liposomal AMB [LAMB]) are well documented, the effectiveness of these drugs in combination with nonantifungal agents is poorly understood. In the present study,in vitrointeractions between polyene antifungals (AMB and LAMB) and alginate lyase (AlgL), an enzyme degrading the polysaccharides produced as extracellular polymeric substances (EPSs) within the biofilm matrix, againstA. fumigatusbiofilms were evaluated by using the checkerboard microdilution and the time-kill assays. Furthermore, atomic force microscopy (AFM) was used to image and quantify the effects of AlgL-antifungal combinations on biofilm-growing hyphal cells. On the basis of fractional inhibitory concentration index values, synergy was found between both AMB formulations and AlgL, and this finding was also confirmed by the time-kill test. Finally, AFM analysis showed that whenA. fumigatusbiofilms were treated with AlgL or polyene alone, as well as with their combination, both a reduction of hyphal thicknesses and an increase of adhesive forces were observed compared to the findings for untreated controls, probably owing to the different action by the enzyme or the antifungal compounds. Interestingly, marked physical changes were noticed inA. fumigatusbiofilms exposed to the AlgL-antifungal combinations compared with the physical characteristics detected after exposure to the antifungals alone, indicating that AlgL may enhance the antibiofilm activity of both AMB and LAMB, perhaps by disrupting the hypha-embedding EPSs and thus facilitating the drugs to reach biofilm cells. Taken together, our results suggest that a combination of AlgL and a polyene antifungal may prove to be a new therapeutic strategy for invasive aspergillosis, while reinforcing the EPS as a valuable antibiofilm drug target.


2012 ◽  
Vol 11 (9) ◽  
pp. 1167-1177 ◽  
Author(s):  
Sanjoy Paul ◽  
J. Stacey Klutts ◽  
W. Scott Moye-Rowley

ABSTRACTThe filamentous fungusAspergillus fumigatusis an important opportunistic pathogen that can cause high mortality levels in susceptible patient populations. The increasing dependence on antifungal drugs to controlA. fumigatushas led to the inevitable acquisition of drug-resistant forms of this pathogen. In other fungal pathogens, drug resistance is often associated with an increase in transcription of genes such as ATP-binding cassette (ABC) transporters that directly lead to tolerance to commonly employed antifungal drugs. InA. fumigatus, tolerance to azole drugs (the major class of antifungal) is often associated with changes in the sequence of the azole target enzyme as well as changes in the transcription level of this gene. The target gene for azole drugs inA. fumigatusis referred to ascyp51A. In order to dissect transcription ofcyp51Atranscription and other genes of interest, we constructed a set of firefly luciferase reporter genes designed for use inA. fumigatus. These reporter genes can either replicate autonomously or be targeted to thepyrGlocus, generating an easily assayable uracil auxotrophy. We fused eight differentA. fumigatuspromoters to luciferase. Faithful behaviors of these reporter gene fusions compared to their chromosomal equivalents were evaluated by 5′ rapid amplification of cDNA ends (RACE) and quantitative reverse transcription-PCR (qRT-PCR) analysis. We used this reporter gene system to study stress-regulated transcription of a Hsp70-encoding gene, map an important promoter element in thecyp51Agene, and correct an annotation error in the actin gene. We anticipate that this luciferase reporter gene system will be broadly applicable in analyses of gene expression inA. fumigatus.


mBio ◽  
2021 ◽  
Author(s):  
Thaila Fernanda dos Reis ◽  
Maria Augusta Crivelente Horta ◽  
Ana Cristina Colabardini ◽  
Caroline Mota Fernandes ◽  
Lilian Pereira Silva ◽  
...  

The filamentous fungus Aspergillus fumigatus causes a group of diseases named aspergillosis, and their development occurs after the inhalation of conidia dispersed in the environment. Very few classes of antifungal drugs are available for aspergillosis treatment, e.g., azoles, but the emergence of global resistance to azoles in A. fumigatus clinical isolates has increased over recent decades.


2010 ◽  
Vol 9 (3) ◽  
pp. 438-448 ◽  
Author(s):  
Paul D. Carr ◽  
Danny Tuckwell ◽  
Peter M. Hey ◽  
Laurence Simon ◽  
Christophe d'Enfert ◽  
...  

ABSTRACT Genes that are essential for viability represent potential targets for the development of anti-infective agents. However, relatively few have been determined in the filamentous fungal pathogen Aspergillus fumigatus. A novel solution employing parasexual genetics coupled with transposon mutagenesis using the Fusarium oxysporum transposon impala had previously enabled the identification of 20 essential genes from A. fumigatus; however, further use of this system required a better understanding of the mode of action of the transposon itself. Examination of a range of conditions indicated that impala is activated by prolonged exposure to low temperatures. This newly identified property was then harnessed to identify 96 loci that are critical for viability in A. fumigatus, including genes required for RNA metabolism, organelle organization, protein transport, ribosome biogenesis, and transcription, as well as a number of noncoding RNAs. A number of these genes represent potential targets for much-needed novel antifungal drugs.


2012 ◽  
Vol 11 (12) ◽  
pp. 1557-1567 ◽  
Author(s):  
Sven D. Willger ◽  
E. Jean Cornish ◽  
Dawoon Chung ◽  
Brittany A. Fleming ◽  
Margaret M. Lehmann ◽  
...  

ABSTRACTHypoxia is an environmental stress encountered byAspergillus fumigatusduring invasive pulmonary aspergillosis (IPA). The ability of this mold to adapt to hypoxia is important for fungal virulence and genetically regulated in part by the sterol regulatory element binding protein (SREBP) SrbA. SrbA is required for fungal growth in the murine lung and to ultimately cause lethal disease in murine models of IPA. Here we identified and partially characterized four genes (dscA,dscB,dscC, anddscD, here referred to asdscA-D) with previously unknown functions inA. fumigatusthat are orthologs of theSchizosaccharomyces pombegenesdsc1,dsc2,dsc3, anddsc4(dsc1-4), which encode a Golgi E3 ligase complex critical for SREBP activation by proteolytic cleavage.A. fumigatusnulldscA-Dmutants displayed remarkable defects in hypoxic growth and increased susceptibility to triazole antifungal drugs. Consistent with the confirmed role of these genes inS. pombe, both ΔdscAand ΔdscCresulted in reduced cleavage of the SrbA precursor protein inA. fumigatus. Inoculation of corticosteroid immunosuppressed mice with ΔdscAand ΔdscCstrains revealed that these genes are critical forA. fumigatusvirulence. Reintroduction of SrbA amino acids 1 to 425, encompassing the N terminus DNA binding domain, into the ΔdscAstrain was able to partially restore virulence, further supporting a mechanistic link between DscA and SrbA function. Thus, we have shown for the first time the importance of a previously uncharacterized group of genes inA. fumigatusthat mediate hypoxia adaptation, fungal virulence, and triazole drug susceptibility and that are likely linked to regulation of SrbA function.


mBio ◽  
2020 ◽  
Vol 11 (5) ◽  
Author(s):  
Jennifer Scott ◽  
Monica Sueiro-Olivares ◽  
Benjamin P. Thornton ◽  
Rebecca A. Owens ◽  
Howbeer Muhamadali ◽  
...  

ABSTRACT There is an urgent need to develop novel antifungals to tackle the threat fungal pathogens pose to human health. Here, we have performed a comprehensive characterization and validation of the promising target methionine synthase (MetH). We show that in Aspergillus fumigatus the absence of this enzymatic activity triggers a metabolic imbalance that causes a reduction in intracellular ATP, which prevents fungal growth even in the presence of methionine. Interestingly, growth can be recovered in the presence of certain metabolites, which shows that metH is a conditionally essential gene and consequently should be targeted in established infections for a more comprehensive validation. Accordingly, we have validated the use of the tetOFF genetic model in fungal research and improved its performance in vivo to achieve initial validation of targets in models of established infection. We show that repression of metH in growing hyphae halts growth in vitro, which translates into a beneficial effect when targeting established infections using this model in vivo. Finally, a structure-based virtual screening of methionine synthases reveals key differences between the human and fungal structures and unravels features in the fungal enzyme that can guide the design of novel specific inhibitors. Therefore, methionine synthase is a valuable target for the development of new antifungals. IMPORTANCE Fungal pathogens are responsible for millions of life-threatening infections on an annual basis worldwide. The current repertoire of antifungal drugs is very limited and, worryingly, resistance has emerged and already become a serious threat to our capacity to treat fungal diseases. The first step to develop new drugs is often to identify molecular targets in the pathogen whose inhibition during infection can prevent its growth. However, the current models are not suitable to validate targets in established infections. Here, we have characterized the promising antifungal target methionine synthase in great detail, using the prominent fungal pathogen Aspergillus fumigatus as a model. We have uncovered the underlying reason for its essentiality and confirmed its druggability. Furthermore, we have optimized the use of a genetic system to show a beneficial effect of targeting methionine synthase in established infections. Therefore, we believe that antifungal drugs to target methionine synthase should be pursued and additionally, we provide a model that permits gaining information about the validity of antifungal targets in established infections.


2017 ◽  
Vol 61 (7) ◽  
Author(s):  
Tatiana Y. Hargrove ◽  
Edward P. Garvey ◽  
William J. Hoekstra ◽  
Christopher M. Yates ◽  
Zdzislaw Wawrzak ◽  
...  

ABSTRACT Within the past few decades, the incidence and complexity of human fungal infections have increased, and therefore, the need for safer and more efficient, broad-spectrum antifungal agents is high. In the study described here, we characterized the new tetrazole-based drug candidate VT-1598 as an inhibitor of sterol 14α-demethylase (CYP51B) from the filamentous fungus Aspergillus fumigatus. VT-1598 displayed a high affinity of binding to the enzyme in solution (dissociation constant, 13 ± 1 nM) and in the reconstituted enzymatic reaction was revealed to have an inhibitory potency stronger than the potencies of all other simultaneously tested antifungal drugs, including fluconazole, voriconazole, ketoconazole, and posaconazole. The X-ray structure of the VT-1598/A. fumigatus CYP51 complex was determined and depicts the distinctive binding mode of the inhibitor in the enzyme active site, suggesting the molecular basis of the improved drug potency and broad-spectrum antifungal activity. These data show the formation of an optimized hydrogen bond between the phenoxymethyl oxygen of VT-1598 and the imidazole ring nitrogen of His374, the CYP51 residue that is highly conserved across fungal pathogens and fungus specific. Comparative structural analysis of A. fumigatus CYP51/voriconazole and Candida albicans CYP51/VT-1161 complexes supports the role of H bonding in fungal CYP51/inhibitor complexes and emphasizes the importance of an optimal distance between this interaction and the inhibitor-heme iron interaction. Cellular experiments using two A. fumigatus strains (strains 32820 and 1022) displayed a direct correlation between the effects of the drugs on CYP51B activity and fungal growth inhibition, indicating the noteworthy anti-A. fumigatus potency of VT-1598 and confirming its promise as a broad-spectrum antifungal agent.


Sign in / Sign up

Export Citation Format

Share Document