scholarly journals Activities of roxithromycin against Mycobacterium avium infections in human macrophages and C57BL/6 mice.

1995 ◽  
Vol 39 (4) ◽  
pp. 878-881 ◽  
Author(s):  
L Struillou ◽  
Y Cohen ◽  
N Lounis ◽  
G Bertrand ◽  
J Grosset ◽  
...  

The activity of roxithromycin against three clinical isolates of Mycobacterium avium was compared with that of clarithromycin both in a model of infection of human monocyte-derived macrophages and in a model of established infection of C57BL/6 mice. In the cell culture model, roxithromycin and clarithromycin were bactericidal for strains MO-1 and N-92159 and bacteriostatic for strain N-93043. For the three strains, the differences between the intracellular activities of roxithromycin and clarithromycin were not singificant after 7 days of treatment. Mice were infected with the MO-1 strain. Drugs were given by gavage at a dosage of 200 mg/kg of body weight 6 days per week for 16 weeks starting 5 weeks after infection. At the end of treatment, clarithromycin was more effective than roxithromycin in lungs; roxithromycin was as effective as clarithromycin in spleens. Thus, the activity of roxithromycin was comparable to that of clarithromycin both in vitro and in vivo.

2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Hélène Guegan ◽  
Kevin Ory ◽  
Sorya Belaz ◽  
Aurélien Jan ◽  
Sarah Dion ◽  
...  

Abstract Background The chemotherapeutic arsenal available to treat visceral leishmaniasis is currently limited, in view of many drawbacks such as high cost, toxicity or emerging resistance. New therapeutic strategies are particularly needed to improve the management and the outcome in immunosuppressed patients. The combination of an immunomodulatory drug to a conventional anti-Leishmania treatment is an emerging concept to reverse the immune bias from Th2 to Th1 response to boost healing and prevent relapses. Methods Here, immunostimulating and leishmanicidal properties of octyl-β-d-galactofuranose (Galf) were assessed in human monocyte-derived macrophages (HM) and in a murine model, after challenge with Leishmania donovani promastigotes. We recorded parasite loads and expression of various cytokines and immune effectors in HM and mouse organs (liver, spleen, bone marrow), following treatment with free (Galf) and liposomal (L-Galf) formulations. Results Both treatments significantly reduced parasite proliferation in HM, as well as liver parasite burden in vivo (Galf, P < 0.05). Consistent with in vitro results, we showed that Galf- and L-Galf-treated mice displayed an enhanced Th1 immune response, particularly in the spleen where pro-inflammatory cytokines TNF-α, IL-1β and IL-12 were significantly overexpressed compared to control group. The hepatic recruitment of myeloid cells was also favored by L-Galf treatment as evidenced by the five-fold increase of myeloperoxidase (MPO) induction, which was associated with a higher number of MPO-positive cells within granulomas. By contrast, the systemic level of various cytokines such as IL-1β, IL-6, IL-17A or IL-27 was drastically reduced at the end of treatment. Conclusions Overall, these results suggest that Galf could be tested as an adjuvant in combination with current anti-parasitic drugs, to restore an efficient immune response against infection in a model of immunosuppressed mice.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Michael Lattke ◽  
Robert Goldstone ◽  
James K. Ellis ◽  
Stefan Boeing ◽  
Jerónimo Jurado-Arjona ◽  
...  

AbstractAstrocytes have essential functions in brain homeostasis that are established late in differentiation, but the mechanisms underlying the functional maturation of astrocytes are not well understood. Here we identify extensive transcriptional changes that occur during murine astrocyte maturation in vivo that are accompanied by chromatin remodelling at enhancer elements. Investigating astrocyte maturation in a cell culture model revealed that in vitro-differentiated astrocytes lack expression of many mature astrocyte-specific genes, including genes for the transcription factors Rorb, Dbx2, Lhx2 and Fezf2. Forced expression of these factors in vitro induces distinct sets of mature astrocyte-specific transcripts. Culturing astrocytes in a three-dimensional matrix containing FGF2 induces expression of Rorb, Dbx2 and Lhx2 and improves astrocyte maturity based on transcriptional and chromatin profiles. Therefore, extrinsic signals orchestrate the expression of multiple intrinsic regulators, which in turn induce in a modular manner the transcriptional and chromatin changes underlying astrocyte maturation.


2021 ◽  
Author(s):  
Ashok Chakraborty ◽  
Anil Diwan ◽  
Vijetha Chiniga ◽  
Vinod Arora ◽  
Preetam Holkar ◽  
...  

Remdesivir (RDV) is the only antiviral drug so far approved for COVID-19 therapy by the FDA. However its efficacy is limited in vivo due to its low stability in presence of plasma. This paper compared the stability of RDV encapsulated with our platform technology based polymer NV-387 (NV-CoV-2), in presence of plasma in vitro and in vivo . Furthermore, a non-clinical pharmacology studies of NV-CoV-2 (Polymer) and NV-CoV-2-R (Polymer encapsulated Remdesivir ) in both NL-63 infected and uninfected rats were done. In an in vitro cell culture model experiment, antiviral activity of NV-CoV-2 and NV-CoV-2-R are also compared with RDV.


2020 ◽  
Author(s):  
Michael Lattke ◽  
Robert Goldstone ◽  
Francois Guillemot

SummaryAstrocytes have diverse functions in brain homeostasis. Many of these functions are acquired during late stages of differentiation when astrocytes become fully mature. The mechanisms underlying astrocyte maturation are not well understood. Here we identified extensive transcriptional changes that occur during astrocyte maturation and are accompanied by chromatin remodelling at enhancer elements. Investigating astrocyte maturation in a cell culture model revealed that in vitro-differentiated astrocytes lacked expression of many mature astrocyte-specific genes, including genes for the transcription factors Rorb, Dbx2, Lhx2 and Fezf2. Forced expression of these factors in vitro induced distinct sets of mature astrocytes-specific transcripts. Culturing astrocytes with FGF2 in a three-dimensional gel induced expression of Rorb, Dbx2 and Lhx2 and improved their maturity based on transcriptional and chromatin profiles. Therefore extrinsic signals orchestrate the expression of multiple intrinsic regulators, which in turn induce in a modular manner the transcriptional and chromatin changes underlying astrocyte maturation.


2019 ◽  
Vol 24 (4) ◽  
pp. 476-483 ◽  
Author(s):  
Il Doh ◽  
Yong-Jun Kwon ◽  
Bosung Ku ◽  
Dong Woo Lee

Hepatocellular carcinoma (HCC), a major histological subtype of liver cancer, is the third most common cause of cancer-related death worldwide. Currently, many curative standard treatments using target-specific chemotherapeutic agents are being developed. However, drug efficacy tests based on the 2D monolayer cell culture model do not effectively screen the best drug candidates because they do not accurately reflect in vivo tumor microenvironments. Thus, to select the best drug candidates or repositioning drugs, we developed new 3D in vitro hepatic tumor models, including 3D forming and preformed sphere models. A micropillar and microwell chip platform was used for the 3D in vitro liver cell-based model for high-throughput screening. We measured the efficacy of 60 drugs and sorted the most efficacious drugs by comparing the drug response of the 2D monolayer model with the 3D forming and preformed sphere models. Among the 60 drugs, 17 drugs (28.3%) showed a significant high efficacy in the 3D preformed sphere model, while 45 drugs (75%) showed an efficacy in the 2D model. We also calculated the IC50 values of the 17 drugs and found that 7 drugs exhibited a high sensitivity in HCC, which was in agreement with previous studies.


2021 ◽  
Author(s):  
Claudia Kruger ◽  
Aimee Limpach ◽  
Claudia Kappen

ABSTRACTIn the developing vertebrate skeleton, cartilage is an important precursor to the formation of bones. Cartilage is produced by chondrocytes, which derive from embryonic mesoderm and undergo a stereotypical program of differentiation and maturation. Here we modeled this process in vitro, using primary fetal mouse rib chondrocytes in a high-density cell culture model of cartilage differentiation, and performed genome-wide gene expression profiling over the course of culture. The overarching goal of this study was to characterize the molecular pathways involved in cartilage differentiation and maturation. Our results also enable a comprehensive appraisal of distinctions between common in vitro models for cartilage differentiation, and of differences in their molecular resemblance to cartilage formation in vivo.


2004 ◽  
Vol 171 (4S) ◽  
pp. 295-295
Author(s):  
Fernando C. Delvecchio ◽  
Ricardo M. Brizuela ◽  
Karen J. Byer ◽  
W. Patrick Springhart ◽  
Saeed R. Khan ◽  
...  

Pathogens ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 9
Author(s):  
Donghoon Kang ◽  
Natalia V. Kirienko

Pseudomonas aeruginosa is a multidrug-resistant, opportunistic pathogen that utilizes a wide-range of virulence factors to cause acute, life-threatening infections in immunocompromised patients, especially those in intensive care units. It also causes debilitating chronic infections that shorten lives and worsen the quality of life for cystic fibrosis patients. One of the key virulence factors in P. aeruginosa is the siderophore pyoverdine, which provides the pathogen with iron during infection, regulates the production of secreted toxins, and disrupts host iron and mitochondrial homeostasis. These roles have been characterized in model organisms such as Caenorhabditis elegans and mice. However, an intermediary system, using cell culture to investigate the activity of this siderophore has been absent. In this report, we describe such a system, using murine macrophages treated with pyoverdine. We demonstrate that pyoverdine-rich filtrates from P. aeruginosa exhibit substantial cytotoxicity, and that the inhibition of pyoverdine production (genetic or chemical) is sufficient to mitigate virulence. Furthermore, consistent with previous observations made in C. elegans, pyoverdine translocates into cells and disrupts host mitochondrial homeostasis. Most importantly, we observe a strong correlation between pyoverdine production and virulence in P. aeruginosa clinical isolates, confirming pyoverdine’s value as a promising target for therapeutic intervention. This in vitro cell culture model will allow rapid validation of pyoverdine antivirulents in a simple but physiologically relevant manner.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Pierre Santucci ◽  
Daniel J. Greenwood ◽  
Antony Fearns ◽  
Kai Chen ◽  
Haibo Jiang ◽  
...  

AbstractTo be effective, chemotherapy against tuberculosis (TB) must kill the intracellular population of the pathogen, Mycobacterium tuberculosis. However, how host cell microenvironments affect antibiotic accumulation and efficacy remains unclear. Here, we use correlative light, electron, and ion microscopy to investigate how various microenvironments within human macrophages affect the activity of pyrazinamide (PZA), a key antibiotic against TB. We show that PZA accumulates heterogeneously among individual bacteria in multiple host cell environments. Crucially, PZA accumulation and efficacy is maximal within acidified phagosomes. Bedaquiline, another antibiotic commonly used in combined TB therapy, enhances PZA accumulation via a host cell-mediated mechanism. Thus, intracellular localisation and specific microenvironments affect PZA accumulation and efficacy. Our results may explain the potent in vivo efficacy of PZA, compared to its modest in vitro activity, and its critical contribution to TB combination chemotherapy.


Sign in / Sign up

Export Citation Format

Share Document