scholarly journals Extensive transcriptional and chromatin changes underlie astrocyte maturation in vivo and in culture

2020 ◽  
Author(s):  
Michael Lattke ◽  
Robert Goldstone ◽  
Francois Guillemot

SummaryAstrocytes have diverse functions in brain homeostasis. Many of these functions are acquired during late stages of differentiation when astrocytes become fully mature. The mechanisms underlying astrocyte maturation are not well understood. Here we identified extensive transcriptional changes that occur during astrocyte maturation and are accompanied by chromatin remodelling at enhancer elements. Investigating astrocyte maturation in a cell culture model revealed that in vitro-differentiated astrocytes lacked expression of many mature astrocyte-specific genes, including genes for the transcription factors Rorb, Dbx2, Lhx2 and Fezf2. Forced expression of these factors in vitro induced distinct sets of mature astrocytes-specific transcripts. Culturing astrocytes with FGF2 in a three-dimensional gel induced expression of Rorb, Dbx2 and Lhx2 and improved their maturity based on transcriptional and chromatin profiles. Therefore extrinsic signals orchestrate the expression of multiple intrinsic regulators, which in turn induce in a modular manner the transcriptional and chromatin changes underlying astrocyte maturation.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Michael Lattke ◽  
Robert Goldstone ◽  
James K. Ellis ◽  
Stefan Boeing ◽  
Jerónimo Jurado-Arjona ◽  
...  

AbstractAstrocytes have essential functions in brain homeostasis that are established late in differentiation, but the mechanisms underlying the functional maturation of astrocytes are not well understood. Here we identify extensive transcriptional changes that occur during murine astrocyte maturation in vivo that are accompanied by chromatin remodelling at enhancer elements. Investigating astrocyte maturation in a cell culture model revealed that in vitro-differentiated astrocytes lack expression of many mature astrocyte-specific genes, including genes for the transcription factors Rorb, Dbx2, Lhx2 and Fezf2. Forced expression of these factors in vitro induces distinct sets of mature astrocyte-specific transcripts. Culturing astrocytes in a three-dimensional matrix containing FGF2 induces expression of Rorb, Dbx2 and Lhx2 and improves astrocyte maturity based on transcriptional and chromatin profiles. Therefore, extrinsic signals orchestrate the expression of multiple intrinsic regulators, which in turn induce in a modular manner the transcriptional and chromatin changes underlying astrocyte maturation.


2019 ◽  
Vol 35 (6) ◽  
pp. 87-90
Author(s):  
S.V. Nikulin ◽  
V.A. Petrov ◽  
D.A. Sakharov

The real-time monitoring of electric capacitance (impedance spectroscopy) allowed obtaining evidence that structures which look like intestinal villi can be formed during the cultivation under static conditions as well as during the cultivation in microfluidic chips. It was shown in this work via transcriptome analysis that the Hh signaling pathway is involved in the formation of villus-like structures in vitro, which was previously shown for their formation in vivo. impedance spectroscopy, intestine, villi, electric capacitance, Hh The study was funded by the Russian Science Foundation (Project 16-19-10597).


PLoS ONE ◽  
2012 ◽  
Vol 7 (4) ◽  
pp. e35008 ◽  
Author(s):  
Elhaseen Elamin ◽  
Daisy Jonkers ◽  
Kati Juuti-Uusitalo ◽  
Sven van IJzendoorn ◽  
Freddy Troost ◽  
...  

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Rashmi Nanjundappa ◽  
Dong Kong ◽  
Kyuhwan Shim ◽  
Tim Stearns ◽  
Steven L Brody ◽  
...  

Multiciliated cells (MCC) contain hundreds of motile cilia used to propel fluid over their surface. To template these cilia, each MCC produces between 100-600 centrioles by a process termed centriole amplification. Yet, how MCC regulate the precise number of centrioles and cilia remains unknown. Airway progenitor cells contain two parental centrioles (PC) and form structures called deuterosomes that nucleate centrioles during amplification. Using an ex vivo airway culture model, we show that ablation of PC does not perturb deuterosome formation and centriole amplification. In contrast, loss of PC caused an increase in deuterosome and centriole abundance, highlighting the presence of a compensatory mechanism. Quantification of centriole abundance in vitro and in vivo identified a linear relationship between surface area and centriole number. By manipulating cell size, we discovered that centriole number scales with surface area. Our results demonstrate that a cell-intrinsic surface area-dependent mechanism controls centriole and cilia abundance in multiciliated cells.


2021 ◽  
Author(s):  
Rachel M McLaughlin ◽  
Amanda Laguna ◽  
Ilayda Top ◽  
Christien Hernadez ◽  
Liane L Livi ◽  
...  

Stroke is a devastating neurological disorder and a leading cause of death and long-term disability. Despite many decades of research, there are still very few therapeutic options for patients suffering from stroke or its consequences. This is partially due to the limitations of current research models, including traditional in vitro models which lack the three-dimensional (3D) architecture and cellular make-up of the in vivo brain. 3D spheroids derived from primary postnatal rat cortex provide an in vivo-relevant model containing a similar cellular composition to the native cortex and a cell-synthesized extracellular matrix. These spheroids are cost-effective, highly reproducible, and can be produced in a high-throughput manner, making this model an ideal candidate for screening potential therapeutics. To study the cellular and molecular mechanisms of stroke in this model, spheroids were deprived of glucose, oxygen, or both oxygen and glucose for 24 hours. Both oxygen and oxygen-glucose deprived spheroids demonstrated many of the hallmarks of stroke, including a decrease in metabolism, an increase in neural dysfunction, and an increase in reactive astrocytes. Pretreatment of spheroids with the antioxidant agent N-acetylcysteine (NAC) mitigated the decrease in ATP seen after 24 hours of oxygen-glucose deprivation. Together, these results show the utility of our 3D cortical spheroid model for studying ischemic injury and its potential for screening stroke therapeutics.


mSphere ◽  
2015 ◽  
Vol 1 (1) ◽  
Author(s):  
Coyne G. Drummond ◽  
Cheryl A. Nickerson ◽  
Carolyn B. Coyne

ABSTRACT Coxsackievirus B (CVB), a member of the enterovirus family of RNA viruses, is associated with meningitis, pericarditis, diabetes, dilated cardiomyopathy, and myocarditis, among other pathologies. CVB is transmitted via the fecal-oral route and encounters the epithelium lining the gastrointestinal tract early in infection. The lack of suitable in vivo and in vitro models to study CVB infection of the gastrointestinal epithelium has limited our understanding of the events that surround infection of these specialized cells. Here, we report on the development of a three-dimensional (3-D) organotypic cell culture model of human intestinal epithelial cells that better models the gastrointestinal epithelium in vivo. By applying this 3-D model, which recapitulates many aspects of the gastrointestinal epithelium in vivo, to the study of CVB infection, our work provides a new cell system to model the mechanisms by which CVB infects the intestinal epithelium, which may have a profound impact on CVB pathogenesis. Despite serving as the primary entry portal for coxsackievirus B (CVB), little is known about CVB infection of the intestinal epithelium, owing at least in part to the lack of suitable in vivo models and the inability of cultured cells to recapitulate the complexity and structure associated with the gastrointestinal (GI) tract. Here, we report on the development of a three-dimensional (3-D) organotypic cell culture model of Caco-2 cells to model CVB infection of the gastrointestinal epithelium. We show that Caco-2 cells grown in 3-D using the rotating wall vessel (RWV) bioreactor recapitulate many of the properties of the intestinal epithelium, including the formation of well-developed tight junctions, apical-basolateral polarity, brush borders, and multicellular complexity. In addition, transcriptome analyses using transcriptome sequencing (RNA-Seq) revealed the induction of a number of genes associated with intestinal epithelial differentiation and/or intestinal processes in vivo when Caco-2 cells were cultured in 3-D. Applying this model to CVB infection, we found that although the levels of intracellular virus production were similar in two-dimensional (2-D) and 3-D Caco-2 cell cultures, the release of infectious CVB was enhanced in 3-D cultures at early stages of infection. Unlike CVB, the replication of poliovirus (PV) was significantly reduced in 3-D Caco-2 cell cultures. Collectively, our studies show that Caco-2 cells grown in 3-D using the RWV bioreactor provide a cell culture model that structurally and transcriptionally represents key aspects of cells in the human GI tract and can thus be used to expand our understanding of enterovirus-host interactions in intestinal epithelial cells. IMPORTANCE Coxsackievirus B (CVB), a member of the enterovirus family of RNA viruses, is associated with meningitis, pericarditis, diabetes, dilated cardiomyopathy, and myocarditis, among other pathologies. CVB is transmitted via the fecal-oral route and encounters the epithelium lining the gastrointestinal tract early in infection. The lack of suitable in vivo and in vitro models to study CVB infection of the gastrointestinal epithelium has limited our understanding of the events that surround infection of these specialized cells. Here, we report on the development of a three-dimensional (3-D) organotypic cell culture model of human intestinal epithelial cells that better models the gastrointestinal epithelium in vivo. By applying this 3-D model, which recapitulates many aspects of the gastrointestinal epithelium in vivo, to the study of CVB infection, our work provides a new cell system to model the mechanisms by which CVB infects the intestinal epithelium, which may have a profound impact on CVB pathogenesis. Podcast: A podcast concerning this article is available.


2007 ◽  
Vol 22 (11) ◽  
pp. 3031-3037 ◽  
Author(s):  
P.G.L. Lalitkumar ◽  
S. Lalitkumar ◽  
C.X. Meng ◽  
A. Stavreus-Evers ◽  
F. Hambiliki ◽  
...  

2021 ◽  
Author(s):  
Ashok Chakraborty ◽  
Anil Diwan ◽  
Vijetha Chiniga ◽  
Vinod Arora ◽  
Preetam Holkar ◽  
...  

Remdesivir (RDV) is the only antiviral drug so far approved for COVID-19 therapy by the FDA. However its efficacy is limited in vivo due to its low stability in presence of plasma. This paper compared the stability of RDV encapsulated with our platform technology based polymer NV-387 (NV-CoV-2), in presence of plasma in vitro and in vivo . Furthermore, a non-clinical pharmacology studies of NV-CoV-2 (Polymer) and NV-CoV-2-R (Polymer encapsulated Remdesivir ) in both NL-63 infected and uninfected rats were done. In an in vitro cell culture model experiment, antiviral activity of NV-CoV-2 and NV-CoV-2-R are also compared with RDV.


Author(s):  
Jietao Lin ◽  
Antonia RuJia Sun ◽  
Jian Li ◽  
Tianying Yuan ◽  
Wenxiang Cheng ◽  
...  

Three-dimensional (3D) co-culture models have closer physiological cell composition and behavior than traditional 2D culture. They exhibit pharmacological effects like in vivo responses, and therefore serve as a high-throughput drug screening model to evaluate drug efficacy and safety in vitro. In this study, we created a 3D co-culture environment to mimic pathological characteristics of rheumatoid arthritis (RA) pannus tissue. 3D scaffold was constructed by bioprinting technology with synovial fibroblasts (MH7A), vascular endothelial cells (EA.hy 926) and gelatin/alginate hydrogels. Cell viability was observed during 7-day culture and the proliferation rate of co-culture cells showed a stable increase stage. Cell-cell interactions were evaluated in the 3D printed scaffold and we found that spheroid size increased with time. TNF-α stimulated MH7A and EA.hy 926 in 3D pannus model showed higher vascular endothelial growth factor (VEGF) and angiopoietin (ANG) protein expression over time. For drug validation, methotrexate (MTX) was used to examine inhibition effects of angiogenesis in 3D pannus co-culture model. In conclusion, this 3D co-culture pannus model with biological characteristics may help the development of anti-RA drug research.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Salvatore Aguanno ◽  
Claudia Petrelli ◽  
Sara Di Siena ◽  
Luciana De Angelis ◽  
Manuela Pellegrini ◽  
...  

Satellite cells (SC) are the stem cells of skeletal muscles. They are quiescent in adult animals but resume proliferation to allow muscle hypertrophy or regeneration after injury. The mechanisms balancing quiescence, self-renewal, and differentiation of SC are difficult to analyze in vivo owing to their complexity and in vitro because the staminal character of SC is lost when they are removed from the niche and is not adequately reproduced in the culture models currently available. To overcome these difficulties, we set up a culture model of the myogenic C2C12 cell line in suspension. When C2C12 cells are cultured in suspension, they enter a state of quiescence and form three-dimensional aggregates (myospheres) that produce the extracellular matrix and express markers of quiescent SC. In the initial phase of culture, a portion of the cells fuses in syncytia and abandons the myospheres. The remaining cells are mononucleated and quiescent but resume proliferation and differentiation when plated in a monolayer. The notch pathway controls the quiescent state of the cells as shown by the fact that its inhibition leads to the resumption of differentiation. Within this context, notch3 appears to play a central role in the activity of this pathway since the expression of notch1 declines soon after aggregation. In summary, the culture model of C2C12 in suspension may be used to study the cellular interactions of muscle stem cells and the pathways controlling SC quiescence entrance and maintenance.


Sign in / Sign up

Export Citation Format

Share Document