scholarly journals Changes in MIC Alter Responses of Pseudomonas aeruginosa to Tobramycin Exposure

1998 ◽  
Vol 42 (6) ◽  
pp. 1365-1369 ◽  
Author(s):  
L. L. Ioannides-Demos ◽  
L. Liolios ◽  
P. Wood ◽  
W. J. Spicer ◽  
A. J. McLean

ABSTRACT The pharmacokinetic parameters determining antibiotic efficacy are peak concentrations (C max), minimum (trough) concentrations (C min), and area under the concentration-time curve (AUC). There is general agreement about the importance of C max and AUC for aminoglycosides, but this is not so for maintenance of C min. With in vitro exposures modelling in vivo administration,Pseudomonas aeruginosa reference strain ATCC 27853 (MIC, 1 mg/liter) and a higher-MIC (relatively resistant) clinical isolate (MIC, 4 mg/liter) were used to explore bacteriostatic and bactericidal outcomes. With P. aeruginosa ATCC 27853, kill followed a complete bolus profile with a 30-min postdistribution peak (C peak30) of 10 mg/liter. The clinical isolate required a C peak30 bolus profile of 20 mg/liter for kill, and there was no difference between the efficacies of the bolus and infusion exposures. Bolus profiles that were truncated at 8.5 h and producing sublethal effects were then combined with a wide range of C mins. With aC peak30 profile of 8 mg/liter, P. aeruginosa ATCC 27853 showed a graded bacteriostatic response until a C min of ≥0.8 mg/liter, when complete kill resulted. In contrast, bactericidal effects on the clinical isolate required a C peak30 profile of 18 mg/liter with a C min of ≥1.0 mg/liter. Therefore, C min also contributes to the bactericidal effect of tobramycin, with requirements showing minor variation with change in MIC. Dosing principles for relatively resistant (higher-MIC) organisms are suggested from the data. Relatively higher aminoglycoside doses via infusion regimens are likely to be needed to generate higher peak concentrations and higher AUC values necessary for bactericidal effect in resistant organisms. Maintenance of trough concentrations on the order of 1.0 mg/liter during the interdose interval will tend to guard against the possibility of inadequate peak and AUC exposures for kill.

2019 ◽  
Vol 63 (5) ◽  
Author(s):  
Paul G. Ambrose ◽  
Brian D. VanScoy ◽  
Brian M. Luna ◽  
Jun Yan ◽  
Amber Ulhaq ◽  
...  

ABSTRACT There has been renewed interest in combining traditional small-molecule antimicrobial agents with nontraditional therapies to potentiate antimicrobial effects. Apotransferrin, which decreases iron availability to microbes, is one such approach. We conducted a 48-h one-compartment in vitro infection model to explore the impact of apotransferrin on the bactericidal activity of ciprofloxacin. The challenge panel included four Klebsiella pneumoniae isolates with ciprofloxacin MIC values ranging from 0.08 to 32 mg/liter. Each challenge isolate was subjected to an ineffective ciprofloxacin monotherapy exposure (free-drug area under the concentration-time curve over 24 h divided by the MIC [AUC/MIC ratio] ranging from 0.19 to 96.6) with and without apotransferrin. As expected, the no-treatment and apotransferrin control arms showed unaltered prototypical logarithmic bacterial growth. We identified relationships between exposure and change in bacterial density for ciprofloxacin alone (R2 = 0.64) and ciprofloxacin in combination with apotransferrin (R2 = 0.84). Addition of apotransferrin to ciprofloxacin enabled a remarkable reduction in bacterial density across a wide range of ciprofloxacin exposures. For instance, at a ciprofloxacin AUC/MIC ratio of 20, ciprofloxacin monotherapy resulted in nearly 2 log10 CFU increase in bacterial density, while the combination of apotransferrin and ciprofloxacin resulted in 2 log10 CFU reduction in bacterial density. Furthermore, addition of apotransferrin significantly reduced the emergence of ciprofloxacin-resistant subpopulations compared to monotherapy. These data demonstrate that decreasing the rate of bacterial replication with apotransferrin in combination with antimicrobial therapy represents an opportunity to increase the magnitude of the bactericidal effect and to suppress the growth rate of drug-resistant subpopulations.


1997 ◽  
Vol 41 (5) ◽  
pp. 982-986 ◽  
Author(s):  
T P Kanyok ◽  
A D Killian ◽  
K A Rodvold ◽  
L H Danziger

Aminosidine is an older, broad-spectrum aminoglycoside antibiotic that has been shown to be effective in in vitro and animal models against multiple-drug-resistant tuberculosis and the Mycobacterium avium complex. The objective of this randomized, parallel trial was to characterize the single-dose pharmacokinetics of aminosidine sulfate in healthy subjects (eight males, eight females). Sixteen adults (mean [+/- standard deviation] age, 27.6 +/- 5.6 years) were randomly allocated to receive a single, intramuscular aminosidine sulfate injection at a dose of 12 or 15 mg/kg of body weight. Serial plasma and urine samples were collected over a 24-h period and used to determine aminosidine concentrations by high-performance liquid chromatographic assay. A one-compartment model with first-order input, first-order output, and a lag time (Tlag) and with a weighting factor of 1/y2 best described the data. Compartmental and noncompartmental pharmacokinetic parameters were estimated with the microcomputer program WinNonlin. One subject was not included (15-mg/kg group) because of the lack of sampling time data. On average, subjects attained peak concentrations of 22.4 +/- 3.2 microg/ml at 1.34 +/- 0.45 h. All subjects had plasma aminosidine concentrations below 2 microg/ml at 12 h, and all but two subjects (one in each dosing group) had undetectable plasma aminosidine concentrations at 24 h. The dose-adjusted area under the concentration-time curve from 0 h to infinity of aminosidine was identical for the 12- and 15-mg/kg groups (9.29 +/- 1.5 versus 9.29 +/- 2.2 microg x h/ml per mg/kg; P = 0.998). Similarly, no significant differences (P > 0.05) were observed between dosing groups for peak aminosidine concentration in plasma, time to peak aminosidine concentration in plasma, Tlag, apparent clearance, renal clearance, elimination rate constant, and elimination half-life. A significant difference was observed for the volume of distribution (0.35 versus 0.41 liters/kg; P = 0.037) between the 12 and 15 mg/kg dosing groups. Now that comparable pharmacokinetic profiles between dosing groups have been demonstrated, therapeutic equivalency testing via in vitro pharmacokinetic and pharmacodynamic modelling and randomized clinical trials in humans should be conducted.


1999 ◽  
Vol 43 (4) ◽  
pp. 882-889 ◽  
Author(s):  
Philip D. Lister ◽  
Victoria M. Gardner ◽  
Christine C. Sanders

ABSTRACT Although previous studies have indicated that clavulanate may induce AmpC expression in isolates of Pseudomonas aeruginosa, the impact of this inducer activity on the antibacterial activity of ticarcillin at clinically relevant concentrations has not been investigated. Therefore, a study was designed to determine if the inducer activity of clavulanate was associated with in vitro antagonism of ticarcillin at pharmacokinetically relevant concentrations. By the disk approximation methodology, clavulanate induction of AmpC expression was observed with 8 of 10 clinical isolates of P. aeruginosa. Quantitative studies demonstrated a significant induction of AmpC when clavulanate-inducible strains were exposed to the peak concentrations of clavulanate achieved in human serum with the 3.2- and 3.1-g doses of ticarcillin-clavulanate. In studies with three clavulanate-inducible strains in an in vitro pharmacodynamic model, antagonism of the bactericidal effect of ticarcillin was observed in some tests with regimens simulating a 3.1-g dose of ticarcillin-clavulanate and in all tests with regimens simulating a 3.2-g dose of ticarcillin-clavulanate. No antagonism was observed in studies with two clavulanate-noninducible strains. In contrast to clavulanate, tazobactam failed to induce AmpC expression in any strains, and the pharmacodynamics of piperacillin-tazobactam were somewhat enhanced over those of piperacillin alone against all strains studied. Overall, the data collected from the pharmacodynamic model suggested that induction per se was not always associated with reduced killing but that a certain minimal level of induction by clavulanate was required before antagonism of the antibacterial activity of its companion drug occurred. Nevertheless, since clinically relevant concentrations of clavulanate can antagonize the bactericidal activity of ticarcillin, the combination of ticarcillin-clavulanate should be avoided when selecting an antipseudomonal β-lactam for the treatment of P. aeruginosa infections, particularly in immunocompromised patients. For piperacillin-tazobactam, induction is not an issue in the context of treating this pathogen.


2004 ◽  
Vol 48 (11) ◽  
pp. 4328-4331 ◽  
Author(s):  
Robert DiCenzo ◽  
Derick Peterson ◽  
Kim Cruttenden ◽  
Gene Morse ◽  
Garret Riggs ◽  
...  

ABSTRACT Valproic acid (VPA) has the potential to benefit patients suffering from human immunodeficiency virus (HIV)-associated cognitive impairment. The purpose of this study was to determine if VPA affects the plasma concentration of efavirenz (EFV) or lopinavir. HIV type 1 (HIV-1)-infected patients receiving EFV or lopinavir-ritonavir (LPV/r) had 9 or 10 blood samples drawn over 8 to 24 h of a dosing interval at steady state before and after receiving 250 mg of VPA twice daily for 7 days. VPA blood samples drawn before (C 0) and 8 h after the morning dose (8 h) were compared to blood samples from a group of HIV-1-infected subjects who were taking either combined nucleoside reverse transcriptase inhibitors alone or had discontinued antiretroviral therapy. Pharmacokinetic parameters were calculated by noncompartmental analysis, and tests of bioequivalence were based on 90% confidence intervals (CIs) for ratios or differences. The geometric mean ratio (GMR) (90% CI) of the areas under the concentration-time curve from 0 to 24 h (AUC0-24s) of EFV (n = 11) with and without VPA was 1.00 (0.85, 1.17). The GMR (90% CI) of the AUC0-8s of LPV (n = 8) with and without VPA was 1.38 (0.98, 1.94). The differences (90% CI) in mean C 0 and 8-h VPA concentrations versus the control (n = 11) were −1.0 (−9.4, 7.4) μg/ml and −2.1 (−11.1, 6.9) μg/ml for EFV (n = 10) and −5.0 (−13.2, 3.3) μg/ml and −6.7 (−17.6, 4.2) μg/ml for LPV/r (n = 11), respectively. EFV administration alone is bioequivalent to EFV and VPA coadministration. LPV concentrations tended to be higher when the drug was combined with VPA. Results of VPA comparisons fail to raise concern that coadministration with EFV or LPV/r will significantly influence trough concentrations of VPA.


2012 ◽  
Vol 116 (5) ◽  
pp. 1124-1133 ◽  
Author(s):  
Bruce Hullett ◽  
Sam Salman ◽  
Sean J. O'Halloran ◽  
Deborah Peirce ◽  
Kylie Davies ◽  
...  

Background Parecoxib is a cyclooxygenase-2 selective inhibitor used in management of postoperative pain in adults. This study aimed to provide pediatric pharmacokinetic information for parecoxib and its active metabolite valdecoxib. Methods Thirty-eight children undergoing surgery received parecoxib (1 mg/kg IV to a maximum of 40 mg) at induction of anesthesia, and plasma samples were collected for drug measurement. Population pharmacokinetic parameters were estimated using nonlinear mixed effects modeling. Area under the valdecoxib concentration-time curve and time above cyclooxygenase-2 in vitro 50% inhibitory concentration for free valdecoxib were simulated. Results A three-compartment model best represented parecoxib disposition, whereas one compartment was adequate for valdecoxib. Age was linearly correlated with parecoxib clearance (5.0% increase/yr). There was a sigmoid relationship between age and both valdecoxib clearance and distribution volume. Time to 50% maturation was 87 weeks postmenstrual age for both. In simulations using allometric-based doses the 90% prediction interval of valdecoxib concentration-time curve in children 2-12.7 yr included the mean for adults given 40 mg parecoxib IV. Simulated free valdecoxib plasma concentration remained above the in vitro 50% inhibitory concentrations for more than 12 h. In children younger than 2 yr, a dose reduction is likely required due to ongoing metabolic maturation. Conclusions The final pharmacokinetic model gave a robust representation of parecoxib and valdecoxib disposition. Area under the valdecoxib concentration-time curve was similar to that in adults (40 mg), and simulated free valdecoxib concentration was above the cyclooxygenase-2 in vitro 50% inhibitory concentration for free valdecoxib for at least 12 h.


2010 ◽  
Vol 54 (9) ◽  
pp. 3783-3789 ◽  
Author(s):  
Phillip J. Bergen ◽  
Jurgen B. Bulitta ◽  
Alan Forrest ◽  
Brian T. Tsuji ◽  
Jian Li ◽  
...  

ABSTRACT Colistin plays a key role in treatment of serious infections by Pseudomonas aeruginosa. The aims of this study were to (i) identify the pharmacokinetic/pharmacodynamic (PK/PD) index (i.e., the area under the unbound concentration-time curve to MIC ratio [ƒAUC/MIC], the unbound maximal concentration to MIC ratio [ƒC max/MIC], or the cumulative percentage of a 24-h period that unbound concentrations exceed the MIC [ƒT >MIC]) that best predicts colistin efficacy and (ii) determine the values for the predictive PK/PD index required to achieve various magnitudes of killing effect. Studies were conducted in a one-compartment in vitro PK/PD model for 24 h using P. aeruginosa ATCC 27853, PAO1, and the multidrug-resistant mucoid clinical isolate 19056 muc. Six intermittent dosing intervals, with a range of ƒC max colistin concentrations, and two continuous infusion regimens were examined. PK/PD indices varied from 0.06 to 18 for targeted ƒC max/MIC, 0.36 to 312 for ƒAUC/MIC, and 0 to 100% for ƒT >MIC. A Hill-type model was fit to killing effect data, which were expressed as the log10 ratio of the area under the CFU/ml curve for treated regimens versus control. With ƒC max values equal to or above the MIC, rapid killing was observed following the first dose; substantial regrowth occurred by 24 h with most regimens. The overall killing effect was best correlated with ƒAUC/MIC (R 2 = 0.931) compared to ƒC max/MIC (R 2 = 0.868) and ƒT >MIC (R 2 = 0.785). The magnitudes of ƒAUC/MIC required for 1- and 2-log10 reductions in the area under the CFU/ml curve relative to growth control were 22.6 and 30.4, 27.1 and 35.7, and 5.04 and 6.81 for ATCC 27853, PAO1, and 19056 muc, respectively. The PK/PD targets identified will assist in designing optimal dosing strategies for colistin.


2006 ◽  
Vol 50 (2) ◽  
pp. 806-809 ◽  
Author(s):  
Giuseppantonio Maisetta ◽  
Giovanna Batoni ◽  
Semih Esin ◽  
Walter Florio ◽  
Daria Bottai ◽  
...  

ABSTRACT The antimicrobial activity of human β-defensin 3 (hBD-3) against multidrug-resistant clinical isolates of Staphylococcus aureus, Enterococcus faecium, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, and Acinetobacter baumannii was evaluated. A fast bactericidal effect (within 20 min) against all bacterial strains tested was observed. The presence of 20% human serum abolished the bactericidal activity of hBD-3 against gram-negative strains and reduced the activity of the peptide against gram-positive strains.


2003 ◽  
Vol 47 (5) ◽  
pp. 1598-1603 ◽  
Author(s):  
Raymond Cha ◽  
Richard G. Grucz ◽  
Michael J. Rybak

ABSTRACT Daptomycin exhibits in vitro bactericidal activity against clinically significant gram-positive bacteria. We employed pharmacodynamic modeling to determine a once-daily dosing regimen of daptomycin that correlates to pharmacodynamic endpoints for different resistant gram-positive clinical strains. An in vitro pharmacodynamic model with an initial inoculum of 6 log10 CFU/ml was used to simulate daptomycin regimens ranging in dose from 0 to 9 mg/kg of body weight/day, with corresponding exposures reflecting free-daptomycin concentrations in serum. Bacterial density was profiled over 48 h for two methicillin-resistant Staphylococcus aureus (MRSA-67 and -R515), two glycopeptide intermediate-resistant S. aureus (GISA-992 and -147398), and two vancomycin-resistant Enterococcus faecium (VREF-12366 and -SF12047) strains. A sigmoid dose-response model was used to estimate the effective dose required to achieve 50% (ED50) and 80% (ED80) bacterial density reduction at 48 h. Daptomycin MICs for study isolates ranged from 0.125 to 4 μg/ml. Model fitting resulted in an r 2 of >0.80 for all tested isolates. Control growths at 48 h ranged from 7.3 to 8.5 log10 CFU/ml. Sigmoid relationships were not superimposable between categorical resistant species: ED50 and ED80 values were 1.9 and 3.1, 4.2 and 5.6, and 5.4 and 6.8 mg/kg for MRSA, GISA, and VREF isolates, respectively. Doses required to achieve ED50 and ED80 values correlated with MIC differences between tested organisms. Corresponding area under the concentration-time curve from 0 to 24 h/MIC exposure ratios demonstrated a wide range of ED80 values among the tested isolates. Doses ranging between 3 and 7 mg/kg produced significant bactericidal activity (ED80) against these multidrug-resistant S. aureus and E. faecium isolates.


2002 ◽  
Vol 46 (10) ◽  
pp. 3185-3192 ◽  
Author(s):  
Myo-Kyoung Kim ◽  
Wen Zhou ◽  
Pamela R. Tessier ◽  
Dawei Xuan ◽  
Min Ye ◽  
...  

ABSTRACT Cethromycin (ABT-773), a new ketolide, possesses potent in vitro activity against Streptococcus pneumoniae. The objective of this study was to investigate the in vivo bactericidal activity of cethromycin against macrolide-susceptible and -resistant S. pneumoniae in a murine pneumonia model and to describe the pharmacodynamic (PD) profile of cethromycin. Eight (two macrolide susceptible, six macrolide resistant) clinical isolates of S. pneumoniae were investigated. Cyclophosphamide administration rendered ICR mice transiently neutropenic prior to intratracheal inoculation with 0.05 ml of an S. pneumoniae suspension containing 107 to 108 CFU/ml. Oral cethromycin was initiated 12 to 14 h postinoculation over a dosage range of 0.1 to 800 mg/kg of body weight/day. Lungs from seven to eight mice per treatment and control groups were collected at 0 and 24 h posttherapy to assess bacterial density. The cumulative mortality (n = 12 to 13) was assessed at 120 h (end of therapy) and at 192 h (3 days posttherapy). Recovery of pneumococci from the lungs of infected animals prior to the initiation of therapy ranged from 4.6 to 7.2 log10 CFU. Growth in untreated control animals over a 24-h study period increased 0.3 to 2.7 log10 CFU. Cethromycin demonstrated a substantial bactericidal effect, regardless of macrolide susceptibility. Correlation between changes in bacterial density (24 h) and survival over both 120 and 192 h were statistically significant. All three PD parameters demonstrated a significant correlation with changes in log10 CFU/lung (Spearman's correlation coefficient, P < 0.001); however, the goodness of fit as assessed with the maximum effect (E max) model revealed that the maximum concentration of free drug in serum (C max free)/MIC and the area under the free drug concentration-time curve (AUCfree)/MIC best explained the relationship between drug exposure and reductions in viable bacterial counts. These data reveal that an approximate cethromycin AUCfree/MIC of 50 or C max free/MIC of 1 results in bacteriostatic effects, while higher values (twofold) maximize survival.


Sign in / Sign up

Export Citation Format

Share Document