scholarly journals Effect of Trovafloxacin on Production of Cytokines by Human Monocytes

1998 ◽  
Vol 42 (7) ◽  
pp. 1713-1717 ◽  
Author(s):  
Anis A. Khan ◽  
Teri R. Slifer ◽  
Jack S. Remington

ABSTRACT Antibiotics have previously been shown to have immunomodulatory effects. We examined the effect of the broad-spectrum fluoroquinoline antibiotic trovafloxacin on cytokine synthesis by monocytes obtained from healthy human volunteers and stimulated with either lipopolysaccharide or gram-positive cells (heat-killedStaphylococcus aureus [Pansorbin]). Trovafloxacin levels achievable in humans suppressed in vitro synthesis of each of the cytokines analyzed, viz., interleukin-1α (IL-1α), IL-1β, IL-6, IL-10, granulocyte-macrophage colony-stimulating factor, and tumor necrosis factor alpha. This effect was not due to direct effects of the drug on cellular viability; at these concentrations, trovafloxacin did not have demonstrable cytotoxicity for the monocytes, as determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay. Although similar patterns of suppression of cytokine synthesis were observed in samples obtained from the same volunteers on different days, there were significant day-to-day variations. These results reveal that trovafloxacin possesses significant immunomodulatory activity in vitro and suggest that suppression of acute-phase inflammatory responses may occur in vivo, elicited through trovafloxacin’s effect on cytokine synthesis by human monocytes.

1996 ◽  
Vol 40 (6) ◽  
pp. 1366-1370 ◽  
Author(s):  
K Morikawa ◽  
H Watabe ◽  
M Araake ◽  
S Morikawa

Some antimicrobial agents have been reported to modify the host immune and inflammatory responses both in vivo and in vitro. Fosfomycin (FOM) and clarithromycin (CAM) have immunomodulatory activity on human lymphocyte function. In the present study, we examined the effects of FOM and CAM on cytokine synthesis by lipopolysaccharide (LPS)-stimulated human monocytes in comparison with that of dexamethasone in vitro. The three drugs demonstrated positive or negative effects on the synthesis of various cytokines by LPS-primed monocytes. They suppressed the synthesis of tumor necrosis factor alpha, interleukin 1 alpha (IL-1 alpha), IL-1 beta, the IL-1 receptor antagonist, and granulocyte-macrophage colony-stimulating factor in a concentration-dependent manner at concentrations between 1.6 and 40 micrograms/ml. On the contrary, the drugs showed different actions on the synthesis of IL-6 and IL-10. Namely, FOM enhanced both IL-6 and IL-10 synthesis, CAM enhanced only IL-10 synthesis, but dexamethasone deeply suppressed the synthesis of both cytokines. These data indicate that antibacterial agents may modify acute-phase inflammatory responses through their effects on cytokine synthesis by monocytes.


1998 ◽  
Vol 66 (5) ◽  
pp. 2154-2162 ◽  
Author(s):  
Carla Bromuro ◽  
Roberto La Valle ◽  
Silvia Sandini ◽  
Francesca Urbani ◽  
Clara M. Ausiello ◽  
...  

ABSTRACT The 70-kDa recombinant Candida albicans heat shock protein (CaHsp70) and its 21-kDa C-terminal and 28-kDa N-terminal fragments (CaHsp70-Cter and CaHsp70-Nter, respectively) were studied for their immunogenicity, including proinflammatory cytokine induction in vitro and in vivo, and protection in a murine model of hematogenous candidiasis. The whole protein and its two fragments were strong inducers of both antibody (Ab; immunoglobulin G1 [IgG1] and IgG2b were the prevalent isotypes) and cell-mediated immunity (CMI) responses in mice. CaHsp70 preparations were also recognized as CMI targets by peripheral blood mononuclear cells of healthy human subjects. Inoculation of CaHsp70 preparations into immunized mice induced rapid production of interleukin-6 (IL-6) and tumor necrosis factor alpha, peaking at 2 to 5 h and declining within 24 h. CaHsp70 and CaHsp70-Cter also induced gamma interferon (IFN-γ), IL-12, and IL-10 but not IL-4 production by CD4+ lymphocytes cocultured with splenic accessory cells from nonimmunized mice. In particular, the production of IFN-γ was equal if not superior to that induced in the same cells by whole, heat-inactivated fungal cells or the mitogenic lectin concanavalin A. In immunized mice, however, IL-4 but not IL-12 was produced in addition to IFN-γ upon in vitro stimulation of CD4+ cells with CaHsp70 and CaHsp70-Cter. These animals showed a decreased median survival time compared to nonimmunized mice, and their mortality was strictly associated with organ invasion by fungal hyphae. Their enhanced susceptibility was attributable to the immunization state, as it did not occur in congenitally athymic nude mice, which were unable to raise either Ab or CMI responses to CaHsp70 preparations. Together, our data demonstrate the elevated immunogenicity of CaHsp70, with which, however, no protection against but rather some enhancement of Candida infection seemed to occur in the mouse model used.


2009 ◽  
Vol 77 (12) ◽  
pp. 5612-5622 ◽  
Author(s):  
T. Eoin West ◽  
Thomas R. Hawn ◽  
Shawn J. Skerrett

ABSTRACT Melioidosis is a tropical disease endemic in southeast Asia and northern Australia caused by the gram-negative soil saprophyte Burkholderia pseudomallei. Although infection is often systemic, the lung is frequently involved. B. thailandensis is a closely related organism that at high doses causes lethal pneumonia in mice. We examined the role of Toll-like receptors (TLRs), essential components of innate immunity, in vitro and in vivo during murine B. thailandensis pneumonia. TLR2, TLR4, and TLR5 mediate NF-κB activation by B. thailandensis in transfected HEK293 or CHO cells. In macrophages, TLR4 and the adaptor molecule MyD88, but not TLR2 or TLR5, are required for tumor necrosis factor alpha production induced by B. thailandensis. In low-dose airborne infection, TLR4 is needed for early, but not late, bacterial containment, and MyD88 is essential for control of infection and host survival. TLR2 and TLR5 are not necessary to contain low-dose infection. In high-dose airborne infection, TLR2 deficiency confers a slight survival advantage. Lung and systemic inflammatory responses are induced by low-dose inhaled B. thailandensis independently of individual TLRs or MyD88. These findings suggest that redundancy in TLR signaling or other MyD88-dependent pathways may be important in pneumonic B. thailandensis infection but that MyD88-independent mechanisms of inflammation are also activated. TLR signaling in B. thailandensis infection is substantially comparable to signaling induced by virulent B. pseudomallei. These studies provide additional insights into the host-pathogen interaction in pneumonic Burkholderia infection.


2002 ◽  
Vol 22 (10) ◽  
pp. 3549-3561 ◽  
Author(s):  
Ray-Chang Wu ◽  
Jun Qin ◽  
Yoshihiro Hashimoto ◽  
Jiemin Wong ◽  
Jianming Xu ◽  
...  

ABSTRACT In the past few years, many nuclear receptor coactivators have been identified and shown to be an integral part of receptor action. The most frequently studied of these coactivators are members of the steroid receptor coactivator (SRC) family, SRC-1, TIF2/GRIP1/SRC-2, and pCIP/ACTR/AIB-1/RAC-3/TRAM-1/SRC-3. In this report, we describe the biochemical purification of SRC-1 and SRC-3 protein complexes and the subsequent identification of their associated proteins by mass spectrometry. Surprisingly, we found association of SRC-3, but not SRC-1, with the IκB kinase (IKK). IKK is known to be responsible for the degradation of IκB and the subsequent activation of NF-κB. Since NF-κB plays a key role in host immunity and inflammatory responses, we therefore investigated the significance of the SRC-3-IKK complex. We demonstrated that SRC-3 was able to enhance NF-κB-mediated gene expression in concert with IKK. In addition, we showed that SRC-3 was phosphorylated by the IKK complex in vitro. Furthermore, elevated SRC-3 phosphorylation in vivo and translocation of SRC-3 from cytoplasm to nucleus in response to tumor necrosis factor alpha occurred in cells, suggesting control of subcellular localization of SRC-3 by phosphorylation. Finally, the hypothesis that SRC-3 is involved in NF-κB-mediated gene expression is further supported by the reduced expression of interferon regulatory factor 1, a well-known NF-κB target gene, in the spleens of SRC-3 null mutant mice. Taken together, our results not only reveal the IKK-mediated phosphorylation of SRC-3 to be a regulated event that plays an important role but also substantiate the role of SRC-3 in multiple signaling pathways.


2006 ◽  
Vol 13 (9) ◽  
pp. 1037-1043 ◽  
Author(s):  
Annalisa Ciabattini ◽  
Anna Maria Cuppone ◽  
Rita Pulimeno ◽  
Francesco Iannelli ◽  
Gianni Pozzi ◽  
...  

ABSTRACT Streptococcus gordonii is a bacterial vaccine vector which has previously been shown to activate dendritic cells in vitro and to induce local and systemic immune responses in vivo. In the present study, human monocytes (THP-1 cell line and peripheral blood monocytes) were characterized following interaction with S. gordonii. Treatment of human monocytes with S. gordonii but not latex beads induced a clear up-regulation of CD83, CD40, CD80, and CD54 and the down-regulation of CD14. Furthermore, bacterial treatment stimulated an increased expression of Toll-like receptor 5 (TLR5), TLR6, and TLR7, production of the proinflammatory cytokines tumor necrosis factor alpha and interleukin 1 beta, and reduction of the phagocytic activity. This work shows that the immunostimulatory activity of S. gordonii is not restricted to induction of dendritic-cell maturation but also affects the differentiation process of human monocytes.


2013 ◽  
Vol 41 (04) ◽  
pp. 927-943 ◽  
Author(s):  
Sushruta Koppula ◽  
Wan-Jae Kim ◽  
Jun Jiang ◽  
Do-Wan Shim ◽  
Na-Hyun Oh ◽  
...  

Carpesium macrocephalum (CM) Fr. et Sav. (Compositae) has been used in Chinese folk medicine as an analgesic, hemostatic, antipyretic, and to suppress inflammatory conditions. In the present study we aimed to provide scientific evidence for the anti-inflammatory properties of CM extract and evaluate the intrinsic mechanisms involved in both in vitro and in vivo experimental models. In in vitro findings, CM significantly inhibited the LPS-stimulated release of proinflammatory mediators such as nitric oxide, tumor necrosis factor-alpha, prostaglandin E2, and interleukin-6 in RAW264.7 macrophages in a concentration-dependent fashion. The attenuation of inflammatory responses in LPS-activated RAW264.7 cells by CM was closely associated with the suppression of nuclear factor-kappa B (NF-κB) phosphorylation, IκB-α degradation, and phosphorylation of Akt. CM treatment also attenuated the phosphorylation of STAT through TRIF dependent pathways in LPS-activated RAW264.7 cells. In vivo studies revealed that CM extract concentration dependently suppressed the acetic acid-induced vascular permeability in mice. Considering the data obtained regulation of multiple signaling mechanisms involving TRIF and Akt/NF-κB pathways might be responsible for the potent anti-inflammatory action of CM, substantiating its traditional use in inflammatory diseases.


2021 ◽  
Vol 11 ◽  
Author(s):  
Marina Natoli ◽  
Petra Herzig ◽  
Elham Pishali Bejestani ◽  
Melanie Buchi ◽  
Reto Ritschard ◽  
...  

Reprogramming tumor infiltrating myeloid cells to elicit pro-inflammatory responses is an exciting therapeutic maneouver to improve anti-tumor responses. We recently demonstrated that a distinct microtubule-targeting drug, plinabulin—a clinical-stage novel agent—modulates dendritic cell maturation and enhances anti-tumor immunity. Here, we investigated the effects of plinabulin on macrophage polarization in vitro and in vivo. Plinabulin monotherapy induced significant tumor growth inhibition in mice bearing subcutaneous MC38 colon cancer. Importantly, the regressing tumors were characterized by an increase in M1-like/M2-like tumor-associated macrophages (TAM) ratio. The efficacy of plinabulin remained unaltered in T cell-deficient Rag2−/− mice, suggesting an important role of macrophages in driving the drug's anti-tumor effect. Exposure of murine and healthy human macrophages to plinabulin induced polarization toward the M1 phenotype, including increased expression of co-stimulatory molecules CD80, CD86 and pro-inflammatory cytokines IL-1β, IL-6, and IL-12. M2-associated immunosuppressive cytokines IL-10 and IL-4 were reduced. This pro-inflammatory M1-like skewing of TAMs in response to plinabulin was dependent on the JNK pathway. Functionally, plinabulin-polarized human M1 macrophages directly killed HuT 78 tumor cells in vitro. Importantly, plinabulin induced a functional M1-like polarization of tumor infiltrating macrophages in murine tumors as well as in tumor samples from ovarian cancer patients, by preferentially triggering M1 proliferation. Our study uncovers a novel immunomodulatory effect of plinabulin in directly triggering M1 polarization and proliferation as well as promoting TAM anti-tumoral effector functions.


2007 ◽  
Vol 75 (7) ◽  
pp. 3490-3497 ◽  
Author(s):  
Julia S. Frick ◽  
Kerstin Fink ◽  
Frauke Kahl ◽  
Maria J. Niemiec ◽  
Matteo Quitadamo ◽  
...  

ABSTRACT An increasing body of evidence suggests that probiotic bacteria are effective in the treatment of enteric infections, although the molecular basis of this activity remains elusive. To identify putative probiotics, we tested commensal bacteria in terms of their toxicity, invasiveness, inhibition of Yersinia-induced inflammation in vitro and in vivo, and modulation of dextran sodium sulfate (DSS)-induced colitis in mice. The commensal bacteria Escherichia coli, Bifidobacterium adolescentis, Bacteroides vulgatus, Bacteroides distasonis, and Streptococcus salivarius were screened for adhesion to, invasion of, and toxicity for host epithelial cells (EC), and the strains were tested for their ability to inhibit Y. enterocolitica-induced NF-κB activation. Additionally, B. adolescentis was administered to mice orally infected with Y. enterocolitica and to mice with mucosae impaired by DSS treatment. None of the commensal bacteria tested was toxic for or invaded the EC. B. adolescentis, B. distasonis, B. vulgatus, and S. salivarius inhibited the Y. enterocolitica-induced NF-κB activation and interleukin-8 production in EC. In line with these findings, B. adolescentis-fed mice had significantly lower results for mean pathogen burden in the visceral organs, intestinal tumor necrosis factor alpha mRNA expression, and loss of body weight upon oral infection with Y. enterocolitica. In addition, the administration of B. adolescentis decelerated inflammation upon DSS treatment in mice. We suggest that our approach might help to identify new probiotics to be used for the treatment of inflammatory and infectious gastrointestinal disorders.


2021 ◽  
Vol 5 (Supplement_2) ◽  
pp. 955-955
Author(s):  
Seok-Yeong Yu ◽  
Zhenhua Liu ◽  
Soonkyu Chung ◽  
Young-Cheul Kim

Abstract Objectives Obese adipose tissue (AT) is characterized by decreased fatty acid oxidation (FAO) and overexpression of tumor necrosis factor alpha (TNFα), a potent proinflammatory mediator of AT dysfunction and metabolic diseases. Several studies have shown that biosynthesis of retinoic acid (RA) from retinol (vitamin A) is suppressed in obese AT. RA has been identified as an agonist for peroxisome proliferator-activated receptor beta/delta (PPARβ/δ), a critical inducer of FAO. The present study aimed to identify a potential mediator of suppressing RA synthesis and thus metabolic dysregulation by (1) evaluating the role of TNFa in tissue RA synthesis and metabolism in vivo and (2) investigating the potential roles of all trans-RA (ATRA) against TNFa-induced AT dysfunction in vitro. We hypothesized that altered retinoid metabolism in obese AT leads to AT dysfunction by reducing PPARβ/δ expression in adipocytes and macrophages. Methods Wild-type (WT) or TNFa knockout (KO) mice were fed a high-fat diet (HFD) or a low-fat diet (LFD) for 16 weeks. Selected serum biochemical parameters as well as expression of genes related to FAO and retinol metabolism were assessed by qPCR and Western Blot analysis. 3T3-L1 adipocytes and RAW264.7 macrophages were also employed to evaluate the effect of TNFa and ATRA on RA synthesis and pro-inflammatory responses. Results We found that RA concentration was significantly attenuated in epididymal AT from HFD-fed TNFa KO group concomitant with the upregulation of genes for RA synthesis (RDH10 & RALDH1) and PPARβ/δ compared to HFD-fed WT group. In 3T3-L1 adipocytes, TNFa treatment significantly inhibited RA synthesis from retinol and downregulated the expression of RDH10 & RALDH1 genes and FAO makers (PPARβ/δ protein and CPT1 mRNA). Furthermore, ATRA treatment significantly increased the expression of PPARβ/δ protein and CPT1 mRNA in TNFα-treated cells. In addition, ATRA significantly suppressed adipocyte-conditioned medium-induced inflammatory responses in RAW264.7 macrophages by increasing PPARβ/δ expression. Conclusions These findings suggest that TNFα overexpressed in obesity mediates AT dysfunction by impairing RA synthesis and ATRA may confer protection against obesity-induced metabolic comorbidities. Funding Sources This project was partially supported by the US Department of Agricultural Experiment Station (MAS00503).


Pharmaceutics ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 223
Author(s):  
Myosotys Rodriguez ◽  
Yemmy Soler ◽  
Mohan Kumar Muthu Karuppan ◽  
Yuling Zhao ◽  
Elena V. Batrakova ◽  
...  

Using nanoparticle-based RNA interference (RNAi), we have previously shown that silencing the host autophagic protein, Beclin1, in HIV-infected human microglia and astrocytes restricts HIV replication and its viral-associated inflammatory responses. Here, we confirmed the efficacy of Beclin1 small interfering RNA (siBeclin1) as an adjunctive antiviral and anti-inflammatory therapy in myeloid human microglia and primary human astrocytes infected with HIV, both with and without exposure to combined antiretroviral (cART) drugs. To specifically target human microglia and human astrocytes, we used a nanoparticle (NP) comprised of linear cationic polyethylenimine (PEI) conjugated with mannose (Man) and encapsulated with siBeclin1. The target specificity of the PEI-Man NP was confirmed in vitro using human neuronal and glial cells transfected with the NP encapsulated with fluorescein isothiocyanate (FITC). PEI-Man-siBeclin1 NPs were intranasally delivered to healthy C57BL/6 mice in order to report the biodistribution of siBeclin1 in different areas of the brain, measured using stem-loop RT-PCR. Postmortem brains recovered at 1–48 h post-treatment with the PEI-Man-siRNA NP showed no significant changes in the secretion of the chemokines regulated on activation, normal T cell expressed and secreted (RANTES) and monocyte chemotactic protein-1 (MCP-1) and showed significant decreases in the secretion of the cytokines interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α) when compared to phosphate-buffered saline (PBS)-treated brains. Nissl staining showed minimal differences between the neuronal structures when compared to PBS-treated brains, which correlated with no adverse behavioral affects. To confirm the brain and peripheral organ distribution of PEI-siBeclin1 in living mice, we used the In vivo Imaging System (IVIS) and demonstrated a significant brain accumulation of siBeclin1 through intranasal administration.


Sign in / Sign up

Export Citation Format

Share Document