scholarly journals In Vitro Antimicrobial Properties of Recombinant ASABF, an Antimicrobial Peptide Isolated from the NematodeAscaris suum

2000 ◽  
Vol 44 (10) ◽  
pp. 2701-2705 ◽  
Author(s):  
Hong Zhang ◽  
Shigenobu Yoshida ◽  
Tomoyasu Aizawa ◽  
Ritsuko Murakami ◽  
Masato Suzuki ◽  
...  

ABSTRACT ASABF is a CSαβ-type antimicrobial peptide that contains four intramolecular disulfide bridges (Y. Kato and S. Komatsu, J. Biol. Chem. 271:30493–30498, 1996). In the present study, a recombinant ASABF was produced by using a yeast expression system, and its antimicrobial activity was characterized in detail. The recombinant ASABF was active against all gram-positive bacteria tested (7 of 7; minimum bactericidal concentration [MBC], 0.03 to 1 μg/ml) exceptLeuconostoc mesenteroides, some gram-negative bacteria (8 of 14; MBC, >0.5 μg/ml), and some yeasts (3 of 9; MBC >3 μg/ml). Slight hemolytic activity (4.2% at 100 μg/ml) against human erythrocytes was observed only under low-ionic-strength conditions. Less than 1 min of contact was enough to kill Staphylococcus aureus ATCC 6538P. The bactericidal activity against S. aureus was inhibited by salts.

2019 ◽  
Vol 17 (72) ◽  
pp. 129-138
Author(s):  
Yasmine Kadom. Al-Majedy

Novel Quinozolins were synthesized in a good yield through convert lacton to lactam and study the biological activity of the synthesized compounds. Quinozolins were characterized by elemental analysis, FT-IR and UV/visible spectra. The novel Quinozolins have been tested in vitro against (gram positive bacteria Staphylococcus aureus and against other gram negative bacteria, such as Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Proteus vulgaris; in order to assess their antimicrobial properties. Moreover, charge, bond length, bond angle, twist angle, heat of formation and steric energy were calculated by using of the ChemOffice program. The study indicates that these Quinozolins have high activity against tested bacteria. Based on the reported results, it may be concluded that the coumarin act as synthons for synthesis of new Quinozolins derivatives through the replacement of oxygen atom by nitrogen atom.


2021 ◽  
Vol 6 (2) ◽  
pp. 21
Author(s):  
Iram Liaqat ◽  
Amna Asgar

The use of natural substances has been trending from past few years. In recent years, the synthetic products obtained from plants have gained immense importance. Essential oils and volatile products obtained from plants are the source of food flavoring, aroma products and fragrance industries. Their use is also common to cure different ailments such as cancer, skin problems and nosocomial infections. Vast research has shown the antimicrobial properties of essential oils obtained from plants. Essential oils of lemongrass and eucalyptus have antiviral, antibacterial, antioxidant and insecticidal characteristics. Lemongrass and eucalyptus oils shows their antibacterial activity towards Gram positive bacteria such as Staphylococcus aureus, Bacillus subtilis and Gram-negative bacteria such as Escherichia coli and Klebsiella pneumonia. Combination of these oils also depicts high antimicrobial activity against different strains of bacteria. This review highlights the use of essential oils of lemongrass and eucalyptus for their in vitro antimicrobial properties against different bacteria in planktonic and biofilm mode. Mode of action by which the oil shows its inhibitory activity will be discussed. Susceptibility shown by different bacteria towards these essential oils and their components will be described


Author(s):  
Mohammed Al-Amery1 ◽  
Ashraf Saad Rasheed ◽  
Dina A. Najeeb

Five new mixed ligand metal complexes have been synthesized by the reaction of divalent transition metal ions (Hg, Ni, Zn, Cu and Cd) with 2-(naphthalen-l-ylamino)-2-phenylacetonitrile (L1 ) and 1,10-phenanthroline (L2). The coordination likelihood of the two ligands toward metal ions has been suggested in the light of elemental analysis, UV-Vis spectra, FTIR, 1H-NMR, flam atomic absorption, molar conductance and magnetic studies. Results data suggest that the octahedral geometry for all the prepared complexes. Antibacterial examination of synthesized complexes in vitro was performed against four bacterias. Firstly, Gram-negative bacteria namely, Pseudomonas aerugin and Escherichia. Secondly, Gram-positive bacteria namely, Bacillus subtilis, Staphylococcuaurouss. Results data exhibit that the synthesized complexes exhibited more biological activity than tetracycline pharmaceutical.


2021 ◽  
Vol 7 (2) ◽  
pp. 40
Author(s):  
Semiha Duygu Sutekin ◽  
Mehtap Sahiner ◽  
Selin Sagbas Suner ◽  
Sahin Demirci ◽  
Olgun Güven ◽  
...  

Nitrogen-doped carbon dots (N-doped C-dots) was synthesized by using poly(vinyl amine) (PVAm) as a nitrogen source and citric acid (CA) as a carbon source via the hydrothermal method. Various weight ratios of CA and PVAm (CA:PVAm) were used to synthesize N-doped C-dots. The N-doped C-dots revealed emission at 440 nm with excitation at 360 nm and were found to increase the fluorescence intensity with an increase in the amount of PVAm. The blood compatibility studies revealed no significant hemolysis for N-doped C-dots that were prepared at different ratios of CA:PVAm for up to 500 μg/mL concentration with the hemolysis ratio of 1.96% and the minimum blood clotting index of 88.9%. N-doped C-dots were found to be more effective against Gram-positive bacteria than Gram-negative bacteria, with the highest potency on Bacillus subtilis (B. subtilis). The increase in the weight ratio of PVAm in feed during C-dots preparation from 1 to 3 leads to a decrease of the minimum bactericidal concentration (MBC) value from 6.25 to 0.75 mg/mL for B. subtilis. Antibiofilm ability of N-doped C-dots prepared by 1:3 ratio of CA:PVAm was found to reduce %biofilm inhibition and eradication- by more than half, at 0.78 mg/mL for E. coli and B. subtilis generated biofilms and almost destroyed at 25 mg/mL concentrations.


2006 ◽  
Vol 50 (6) ◽  
pp. 2261-2264 ◽  
Author(s):  
Hee-Soo Park ◽  
Hyun-Joo Kim ◽  
Min-Jung Seol ◽  
Dong-Rack Choi ◽  
Eung-Chil Choi ◽  
...  

ABSTRACT DW-224a showed the most potent in vitro activity among the quinolone compounds tested against clinical isolates of gram-positive bacteria. Against gram-negative bacteria, DW-224a was slightly less active than the other fluoroquinolones. The in vivo activities of DW-224a against gram-positive bacteria were more potent than those of other quinolones.


2006 ◽  
Vol 50 (7) ◽  
pp. 2478-2486 ◽  
Author(s):  
Andrea Giacometti ◽  
Oscar Cirioni ◽  
Roberto Ghiselli ◽  
Federico Mocchegiani ◽  
Fiorenza Orlando ◽  
...  

ABSTRACT Sepsis remains a major cause of morbidity and mortality in hospitalized patients, despite intense efforts to improve survival. The primary lead for septic shock results from activation of host effector cells by endotoxin, the lipopolysaccharide (LPS) associated with cell membranes of gram-negative bacteria. For these reasons, the quest for compounds with antiendotoxin properties is actively pursued. We investigated the efficacy of the amphibian skin antimicrobial peptide temporin L in binding Escherichia coli LPS in vitro and counteracting its effects in vivo. Temporin L strongly bound to purified E. coli LPS and lipid A in vitro, as proven by fluorescent displacement assay, and readily penetrated into E. coli LPS monolayers. Furthermore, the killing activity of temporin L against E. coli was progressively inhibited by increasing concentrations of LPS added to the medium, further confirming the peptide's affinity for endotoxin. Antimicrobial assays showed that temporin L interacted synergistically with the clinically used β-lactam antibiotics piperacillin and imipenem. Therefore, we characterized the activity of temporin L when combined with imipenem and piperacillin in the prevention of lethality in two rat models of septic shock, measuring bacterial growth in blood and intra-abdominal fluid, endotoxin and tumor necrosis factor alpha (TNF-α) concentrations in plasma, and lethality. With respect to controls and single-drug treatments, the simultaneous administration of temporin L and β-lactams produced the highest antimicrobial activities and the strongest reduction in plasma endotoxin and TNF-α levels, resulting in the highest survival rates.


2012 ◽  
Vol 57 (1) ◽  
pp. 333-342 ◽  
Author(s):  
Justyna Nowakowska ◽  
Hans J. Griesser ◽  
Marcus Textor ◽  
Regine Landmann ◽  
Nina Khanna

ABSTRACTTreatment options are limited for implant-associated infections (IAI) that are mainly caused by biofilm-forming staphylococci. We report here on the activity of the serrulatane compound 8-hydroxyserrulat-14-en-19-oic acid (EN4), a diterpene isolated from the Australian plantEremophila neglecta. EN4 elicited antimicrobial activity toward various Gram-positive bacteria but not to Gram-negative bacteria. It showed a similar bactericidal effect against logarithmic-phase, stationary-phase, and adherentStaphylococcus epidermidis, as well as against methicillin-susceptible and methicillin-resistantS. aureuswith MICs of 25 to 50 μg/ml and MBCs of 50 to 100 μg/ml. The bactericidal activity of EN4 was similar againstS. epidermidisand its Δicamutant, which is unable to produce polysaccharide intercellular adhesin-mediated biofilm. In time-kill studies, EN4 exhibited a rapid and concentration-dependent killing of staphylococci, reducing bacterial counts by >3 log10CFU/ml within 5 min at concentrations of >50 μg/ml. Investigation of the mode of action of EN4 revealed membranolytic properties and a general inhibition of macromolecular biosynthesis, suggesting a multitarget activity.In vitro-tested cytotoxicity on eukaryotic cells was time and concentration dependent in the range of the MBCs. EN4 was then tested in a mouse tissue cage model, where it showed neither bactericidal nor cytotoxic effects, indicating an inhibition of its activity. Inhibition assays revealed that this was caused by interactions with albumin. Overall, these findings suggest that, upon structural changes, EN4 might be a promising pharmacophore for the development of new antimicrobials to treat IAI.


2010 ◽  
Vol 4 (2) ◽  
pp. 37-45
Author(s):  
Matheel D. Al-Sabti ◽  
Ahmed A. H. Al-Amiery ◽  
Thorria R. Marzoog ◽  
Yasmien K. Al-Majedy

This study involves the chemical synthesis of the novel ligand 5-(2-diphenylphosphino) phenyl-1,2-dihydro-1,2,4-triazole-3-thione (DPDTT) by the reaction of 2-diphenylphosphino benzoic acid with absolute ethanol that yield ethyl 2-diphenylphosphino benzoate and by cyclization of this compound with thiosemicarbazide, DPDTT will be produced. The chelating complexes of this ligand with Cr(III), Co(II), Ni(II), Cu(II) and Cd(II) were also prepared and studied. The new complexes were characterized by FT-IR, UV/visible spectra, and room temperature magnetic susceptibility. The stability for the prepared complexes was also measured using the density function theory and it was found that the cadmium complex is the most stable and the chromium complex is the least stable. Free ligand and its metal complexes have been tested in vitro against a number of microorganisms, like gram positive bacteria Staphylococcus aureus and gram negative bacteria E. coli, Proteus vulgaris, Pseudomonas and Klebsiella in order to assess their antimicrobial properties. All complexes showed considerable activity against all the studied bacteria.


1998 ◽  
Vol 180 (8) ◽  
pp. 2110-2117 ◽  
Author(s):  
Susanne Krogh ◽  
Steen T. Jørgensen ◽  
Kevin M. Devine

ABSTRACT Four genes identified within the late operon of PBSX show characteristics expected of a host cell lysis system; they arexepA, encoding an exported protein; xhlA, encoding a putative membrane-associated protein; xhlB, encoding a putative holin; and xlyA, encoding a putative endolysin. In this work, we have assessed the contribution of each gene to host cell lysis by expressing the four genes in different combinations under the control of their natural promoter located on the chromosome of Bacillus subtilis 168. The results show thatxepA is unlikely to be involved in host cell lysis. Expression of both xhlA and xhlB is necessary to effect host cell lysis of B. subtilis. Expression ofxhlB (encoding the putative holin) together withxlyA (encoding the endolysin) cannot effect cell lysis, indicating that the PBSX lysis system differs from those identified in the phages of gram-negative bacteria. Since host cell lysis can be achieved when xlyA is inactivated, it is probable that PBSX encodes a second endolysin activity which also uses XhlA and XhlB for export from the cell. The chromosome-based expression system developed in this study to investigate the functions of the PBSX lysis genes should be a valuable tool for the analysis of other host cell lysis systems and for expression and functional analysis of other lethal gene products in gram-positive bacteria.


Sign in / Sign up

Export Citation Format

Share Document