scholarly journals Clarithromycin Inhibits NF-κB Activation in Human Peripheral Blood Mononuclear Cells and Pulmonary Epithelial Cells

2001 ◽  
Vol 45 (1) ◽  
pp. 44-47 ◽  
Author(s):  
Takashi Ichiyama ◽  
Miki Nishikawa ◽  
Tomomi Yoshitomi ◽  
Shunji Hasegawa ◽  
Tomoyo Matsubara ◽  
...  

ABSTRACT Macrolide antibiotics modulate the production of proinflammatory cytokines in vivo and in vitro. Transcription of the genes for these proinflammatory cytokines is regulated by nuclear factor κB (NF-κB). We examined whether or not clarithromycin inhibits the activation of NF-κB induced by tumor necrosis factor alpha (TNF-α) or staphylococcal enterotoxin A (SEA) in human monocytic U-937 cells, a T-cell line (Jurkat), a pulmonary epithelial cell line (A549), and peripheral blood mononuclear cells (PBMC). Flow cytometry revealed that clarithromycin suppresses NF-κB activation induced by TNF-α in U-937 and Jurkat cells in a concentration-related manner. Western blot analysis also demonstrated that clarithromycin inhibits NF-κB activation induced by TNF-α in U-937, Jurkat, and A549 cells and PBMC and by SEA in PBMC. Western blot analysis of cytoplasmic extracts of A549 cells revealed that this inhibition is not linked to preservation of expression of the IκBα protein. The chloramphenicol acetyltransferase assay indicated that NF-κB-dependent reporter gene expression is suppressed in U-937 cells pretreated with clarithromycin. These findings are consistent with the idea that clarithromycin suppresses the production of proinflammatory cytokines via inhibition of NF-κB activation.

2003 ◽  
Vol 47 (12) ◽  
pp. 3704-3707 ◽  
Author(s):  
Jung-Hyun Choi ◽  
Min-Jin Song ◽  
Seung-Han Kim ◽  
Su-Mi Choi ◽  
Dong-Gun Lee ◽  
...  

ABSTRACT The effects of moxifloxacin, a new methoxyfluoroquinolone, on the production of proinflammatory cytokines from human peripheral blood mononuclear cells (PBMCs) were evaluated. Moxifloxacin inhibited the production of tumor necrosis factor alpha (TNF-α) and/or interleukin-6 (IL-6) by PBMCs stimulated with lipopolysaccharide (LPS), lipoteichoic acid (LTA), and heat-killed bacteria in a concentration-dependent manner without cytotoxic effects. The addition of moxifloxacin reduced the population of cells positive for CD-14 and TNF-α and for CD-14 and IL-6 among the LPS- or LTA-stimulated PBMCs. By Western blot analysis, moxifloxacin pretreatment reduced the degradation of IκBα in LPS-stimulated PBMCs. In conclusion, moxifloxacin could interfere with NF-κB activation by inhibiting the degradation of IκBα and reduce the levels of production of proinflammatory cytokines.


2007 ◽  
Vol 97 (05) ◽  
pp. 822-829 ◽  
Author(s):  
Peter Kierulf ◽  
Per Sandset ◽  
Olav Klingenberg ◽  
Gunn Joø ◽  
Hans Godal ◽  
...  

SummaryFibrinogen in plasma includes three main fractions; high-molecular- weight (HMW) -fibrinogen, low-molecular-weight (LMW) -fibrinogen, and very-low-molecular-weight (LMW`) -fibrinogen. During acute-phase conditions, plasma fibrinogen levels and the HMW-/LMW-fibrinogen ratio increase rapidly due to increased synthesis of HMW-fibrinogen. The consequences of elevated plasma fibrinogen levels and local deposition of fibrin in inflammatory tissues observed during acute-phase conditions are not clear.We wanted to investigate proinflammatory effects of fibrinogen and fibrin on peripheral blood mononuclear cells (PBMC) as reflected by altered mRNA expression and synthesis of the proinflammatory cytokines IL-6,TNF- α and IL-1 β, and to explore the significance of altered HMW-/LMW-fibrinogen ratio. PBMC were isolated from whole blood using Lymphoprep® . HMW-fibrinogen was separated from unfractioned fibrinogen by ammonium sulphate precipitation. Cells were incubated with unfractioned fibrinogen, HMW-fibrinogen or fibrin. Cytokine levels in cell lysates were determined using ELISA assays. Real-time PCR was used for mRNA quantification. We found that fibrinogen significantly increased mRNA levels, and induced synthesis of the proinflammatory cytokines IL-6 and TNF- α in PBMC in a dose dependent manner. Median (25, 75 percentile) IL-6 and TNF- α concentrations were 12 (5, 40) pg/ ml and 16 (0,61) pg/ml,respectively.Median mRNA quantity was increased 12.3– (6.6, 48.6) and 1.7– (1.5, 6.5) fold for IL-6 and TNF- α compared to controls.The stimulatory effect of unfractioned fibrinogen was not significantly different from HMW-fibrinogen. Fibrinogen and fibrin were equally effective in promoting cytokine synthesis from PBMC.The results support that fibrin and fibrinogen may actively modulate the inflammatory process by inducing synthesis of proinflammatory cytokines from PBMC.


Blood ◽  
2003 ◽  
Vol 101 (5) ◽  
pp. 1882-1890 ◽  
Author(s):  
Matthias Majetschak ◽  
Ulrich Krehmeier ◽  
Mark Bardenheuer ◽  
Christof Denz ◽  
Michael Quintel ◽  
...  

Ubiquitin is suggested to play a key role in essential intracellular functions, such as heat shock response, protein breakdown, and regulation of immune responses. Ubiquitin has also been detected in the extracellular space, but the function and biologic significance is unclear. We describe a new function of extracellular ubiquitin and show that extracellular ubiquitin specifically inhibits ex vivo secretion of tumor necrosis factor-α (TNF-α) and TNF-α mRNA expression from peripheral blood mononuclear cells (PBMNCs) in response to endotoxin in a dose-dependent manner. In contrast, the TNF-α response to zymosan or Staphylococcus aureus as well as the interleukin-6 (IL-6) and IL-8 responses to endotoxin were unaffected by ubiquitin. Measurement of serum ubiquitin levels showed a significant 5- to 7-fold increase in sepsis and trauma patients, to the level required for inhibition of the PBMNC TNF-α response to endotoxin by ubiquitin. Elevated ubiquitin levels in serum were significantly correlated with a reduced TNF-α production. Antibodies to ubiquitin were able to (1) significantly increase (2- to 5-fold) the TNF-α response to endotoxin in whole blood from trauma and sepsis patients, (2) completely neutralize the inhibitory effect of trauma patients' serum on healthy donors' TNF-α production, and (3) partially neutralize the inhibitory effect of sepsis patients' serum on healthy donors' TNF-α production. Ubiquitin-depleted serum from trauma patients lost the inhibitory activity for TNF-α production, whereas extracted endogenous ubiquitin exerts the inhibitory activity. The results demonstrate that extracellular ubiquitin acts as a cytokinelike protein with anti-inflammatory properties and indicate that extracellular ubiquitin is involved in the regulation of immunodepression in critical illness.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1945-1945 ◽  
Author(s):  
Jeffrey E. Lancet ◽  
Elliott F. Winton ◽  
Robert K. Stuart ◽  
Michelle Burton ◽  
Christopher Cubitt ◽  
...  

Abstract Combination therapy utilizing 2 novel agents with independent mechanisms of action and non-overlapping toxicities may be useful in the setting of advanced cancers. Tipifarnib (T) is an orally bioavailable farnesyltranferase inhibitor with documented single-agent activity in acute myeloid leukemia (AML). Bortezomib (B) is a broad inhibitor of proteasomal function, approved for treatment in multiple myeloma and mantle cell lymphoma. Preclinical studies indicated synergistic activity between these 2 agents for eliciting apoptosis within leukemia and myeloma cell lines and ex-vivo cells adhered to fibronectin. In this phase I combination trial, we studied the effect of combined effect of T plus B in patients with advanced acute leukemias. Objectives: The primary endpoint was toxicity assessment. Secondary endpoints included effect of combined therapy on signaling intermediates, including p-AKT, Bim, Bax, and NF-kB, as well as effects on farnesyltransferase (FT) and the proteasome activity. Eligibility: Patients with AML, ALL, or CML-BC who had received < 3 cycles of prior therapy were eligible. Methods: Patients received T on days 1–14 and B on days 1, 4, 8, and 11. Cycles were repeated every 21 days. Dose escalation occurred using cohorts of 3–6 patients. The starting dose was T: 300 mg/m2 and B: 1.0 mg/m2 Bone marrow aspirate was obtained at baseline, day 8, and between day 15 and the start of the next cycle. Measurement of signaling intermediates were performed in Ficoll-enriched leukemic marrow blasts using Western Blot (p-AKT, Bax, Bim) and ELISA (NF-kB). FT and proteasomal activity were directly measured within peripheral blood mononuclear cells (PBMC) using previously described methods. Results: To date, 27 patients have been enrolled at 3 centers. Four patients were ineligible after screening, and 23 patients have been treated. Median age was 69 years (range 48–84) Diagnosis: AML=25, ALL=1, MDS=1. Accrual to the 4th and final dosing cohort has occurred, without maximum tolerated dose being reached at the 4th and final planned dosing cohort (T: 600 mg/m2 and B: 1.3 mg/m2). Six patients received ≥ 2 cycles of treatment. Dose-limiting toxicities to date have included: nausea/diarrhea (1 patient), sensory neuropathy (1 patient), and fatigue (1 patient). Common drug-related (> 10%) non dose-limiting toxicities included: infection/febrile neutropenia, diarrhea, nausea, vomiting, sensory neuropathy, and fatigue, most of which were grade 1 or 2. FTase inhibition within peripheral blood mononuclear cells (PBMC) was measured serially in 8 patients to date, with a median of 70% inhibition by day 8, and with 5 out of 6 evaluable patients having sustained inhibition at day 22. Proteasome function within PBMCs was reduced by a median of 44.3% in 7 patient samples pre-infusion and 1 hour post-infusion on day 8. Proteasome activity within PBMCs at day 22 was decreased from baseline in 5 out of 7 patient samples tested. Compared to baseline, NF-kB binding activity within leukemic blasts at day 8 was decreased by a median of 39% at in 10 out of 14 paired samples. No significant change in expression of p-AKT, Bax, or Bim, as measured by Western Blot, was detected at day 8. Two patients achieved clinical response; 1 patient had a complete response and another patient had complete response with incomplete count recovery. Four others had stable disease following cycle 1. Conclusion: combined therapy with T + B was well tolerated and demonstrated inhibition of several relevant target signals within leukemic blasts and PBMCs. In addition, clinical activity was seen in 2 patients to date. Accrual to the trial is ongoing and updated clinical and pharmacodynamic data will be presented.


Sign in / Sign up

Export Citation Format

Share Document