scholarly journals Therapeutic Efficacy of “Nubiotics” against Burn Wound Infection by Pseudomonas aeruginosa

2004 ◽  
Vol 48 (8) ◽  
pp. 2918-2923 ◽  
Author(s):  
Roderic M. K. Dale ◽  
Glen Schnell ◽  
Jonathan P. Wong

ABSTRACT “Nubiotics” are a novel class of proprietary protonated nucleic acid-based drugs shown to have potent in vitro antibacterial activities against a number of gram-positive and gram-negative bacteria. These nubiotics are evaluated here for their in vivo therapeutic efficacy for the treatment of burn wound infection caused by Pseudomonas aeruginosa. To achieve this, a burn wound infection model was established in mice by using a highly pathogenic burn wound clinical isolate of P. aeruginosa. Lethal doses of the bacteria were determined for two routes of infection (subcutaneous and topical), representing systemic and local forms of infection, respectively. Using this infection model, treatment with nubiotics by various routes of drug administration was evaluated and optimized. A total of 12 nubiotics and their analogues were tested and of these, Nu-2, -3, -4, and -5 were found to be extremely efficacious in the postexposure treatment of burn wound infection (60 to 100% survival rates versus 0% for untreated control [P < 0.05]). These nubiotics were effective when given either systemically by intravenous and/or subcutaneous administration or given locally to the affected site in the skin by topical application. Treatment by these two routes resulted in almost 100% survival rates and complete eradication of the bacteria from infection sites in the livers, spleens, and blood. These nubiotics were found to be as effective as intravenously administered ciprofloxacin, a potent and broad-spectrum fluoroquinolone. These results suggest that nubiotics may be a promising and effective approach for the treatment of burn wound infection caused by P. aeruginosa.

2010 ◽  
Vol 54 (6) ◽  
pp. 2338-2344 ◽  
Author(s):  
Michael P. Horn ◽  
Adrian W. Zuercher ◽  
Martin A. Imboden ◽  
Michael P. Rudolf ◽  
Hedvika Lazar ◽  
...  

ABSTRACT Pseudomonas aeruginosa infection in ventilator-associated pneumonia is a serious and often life-threatening complication in intensive care unit patients, and new treatment options are needed. We used B-cell-enriched peripheral blood lymphocytes from a volunteer immunized with a P. aeruginosa O-polysaccharide-toxin A conjugate vaccine to generate human hybridoma cell lines producing monoclonal antibodies specific for individual P. aeruginosa lipopolysaccharide serotypes. The fully human monoclonal antibody secreted by one of these lines, KBPA101, is an IgM/κ antibody that binds P. aeruginosa of International Antigenic Typing System (IATS) serotype O11 with high avidity (5.81 × 107 M−1 ± 2.8 × 107 M−1) without cross-reacting with other serotypes. KBPA101 specifically opsonized the P. aeruginosa of IATS O11 serotype and mediated complement-dependent phagocytosis in vitro by the human monocyte-like cell line HL-60 at a very low concentration (half-maximal phagocytosis at 0.16 ng/ml). In vivo evaluation of KBPA101 demonstrated a dose-response relationship for protection against systemic infections in a murine burn wound sepsis model, where 70 to 100% of animals were protected against lethal challenges with P. aeruginosa at doses as low as 5 μg/animal. Furthermore, a high efficacy of KBPA101 in protection from local respiratory infections in an acute lung infection model in mice was demonstrated. Preclinical toxicology evaluation on human tissue, in rabbits, and in mice did not indicate any toxicity of KBPA101. Based on these preclinical findings, the first human clinical trials have been initiated.


Antibiotics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1481
Author(s):  
John Jairo Aguilera-Correa ◽  
Sara Fernández-López ◽  
Iskra Dennisse Cuñas-Figueroa ◽  
Sandra Pérez-Rial ◽  
Hanna-Leena Alakomi ◽  
...  

Staphylococcus aureus is the most common cause of surgical site infections and its treatment is challenging due to the emergence of multi-drug resistant strains such as methicillin-resistant S. aureus (MRSA). Natural berry-derived compounds have shown antimicrobial potential, e.g., ellagitannins such as sanguiin H-6 and lambertianin C, the main phenolic compounds in Rubus seeds, have shown antimicrobial activity. The aim of this study was to evaluate the effect of sanguiin H-6 and lambertianin C fractionated from cloudberry seeds, on the MRSA growth, and as treatment of a MRSA biofilm development in different growth media in vitro and in vivo by using a murine wound infection model where sanguiin H-6 and lambertianin C were used to prevent the MRSA infection. Sanguiin H-6 and lambertianin C inhibited the in vitro biofilm development and growth of MRSA. Furthermore, sanguiin H-6 showed significant anti-MRSA effect in the in vivo wound model. Our study shows the possible use of sanguiin H-6 as a preventive measure in surgical sites to avoid postoperative infections, whilst lambertianin C showed no anti-MRSA activity.


1999 ◽  
Vol 43 (6) ◽  
pp. 1429-1434 ◽  
Author(s):  
Bob Goodson ◽  
Anton Ehrhardt ◽  
Simon Ng ◽  
John Nuss ◽  
Kirk Johnson ◽  
...  

ABSTRACT Peptoids differ from peptides in that peptoids are composed of N-substituted rather than alpha-carbon-substituted glycine units. In this paper we report the in vitro and in vivo antibacterial activities of several antibacterial peptoids discovered by screening combinatorial chemistry libraries for bacterial growth inhibition. In vitro, the peptoid CHIR29498 and some of its analogues were active in the range of 3 to 12 μg/ml against a panel of gram-positive and gram-negative bacteria which included isolates which were resistant to known antibiotics. Peptoid antimicrobial activity againstStaphylococcus aureus was rapid, bactericidal, and independent of protein synthesis. β-Galactosidase and propidium iodide leakage assays indicated that the membrane is the most likely target of activity. Positional isomers of an active peptoid were also active, consistent with a mode of action, such as membrane disruption, that does not require a specific fit between the molecule and its target. In vivo, CHIR29498 protected S. aureus-infected mice in a simple infection model.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 199 ◽  
Author(s):  
Iman S. Ahmed ◽  
Osama S. Elnahas ◽  
Nouran H. Assar ◽  
Amany M. Gad ◽  
Rania El Hosary

With the alarming rise in incidence of antibiotic-resistant bacteria and the scarcity of newly developed antibiotics, it is imperative that we design more effective formulations for already marketed antimicrobial agents. Fusidic acid (FA), one of the most widely used antibiotics in the topical treatment of several skin and eye infections, suffers from poor water-solubility, sub-optimal therapeutic efficacy, and a significant rise in FA-resistant Staphylococcus aureus (FRSA). In this work, the physico-chemical characteristics of FA were modified by nanocrystallization and lyophilization to improve its therapeutic efficacy through the dermal route. FA-nanocrystals (NC) were prepared using a modified nanoprecipitation technique and the influence of several formulation/process variables on the prepared FA-NC characteristics were optimized using full factorial statistical design. The optimized FA-NC formulation was evaluated before and after lyophilization by several in-vitro, ex-vivo, and microbiological tests. Furthermore, the lyophilized FA-NC formulation was incorporated into a cream product and its topical antibacterial efficacy was assessed in vivo using a rat excision wound infection model. Surface morphology of optimized FA-NC showed spherical particles with a mean particle size of 115 nm, span value of 1.6 and zeta potential of −11.6 mV. Differential scanning calorimetry and powder X-ray diffractometry confirmed the crystallinity of FA following nanocrystallization and lyophilization. In-vitro results showed a 10-fold increase in the saturation solubility of FA-NC while ex-vivo skin permeation studies showed a 2-fold increase in FA dermal deposition from FA-NC compared to coarse FA. Microbiological studies revealed a 4-fofd decrease in the MIC against S. aureus and S. epidermidis from FA-NC cream compared to commercial Fucidin cream. In-vivo results showed that FA-NC cream improved FA distribution and enhanced bacterial exposure in the infected wound, resulting in increased therapeutic efficacy when compared to coarse FA marketed as Fucidin cream.


2012 ◽  
Vol 8 (8) ◽  
pp. 2932-2940 ◽  
Author(s):  
Akihiro Saito ◽  
Hiromi Miyazaki ◽  
Toshinori Fujie ◽  
Shinya Ohtsubo ◽  
Manabu Kinoshita ◽  
...  

2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S640-S641
Author(s):  
Christian M Gill ◽  
Kamilia Abdelraouf ◽  
David P Nicolau

Abstract Background Carbapenems are often used for infections due to extended-spectrum-β-lactamase (ESBL) and cephalosporinase (CSase)-producers. As increased carbapenem utilization is associated with the development of carbapenem resistance, antimicrobial stewardship has targeted non-carbapenem options. WCK 4282 (FEP 2 g-TZB 2 g) offers pharmacodynamically optimized TZB exposure and demonstrated potent activity in vitro against ESBL-phenotype isolates. We describe the pharmacodynamics of a WCK 4282 human-simulated regimen (HSR) in the neutropenic murine thigh model. Methods 19 clinical strains harboring ESBLs or CSase (EB; n=8 and PA; n=4) or serine-carbapenemases (EB; KPC n=4 or OXA-48-like n=3) were tested in vivo. Per CLSI, 19, 18, and 17 isolates were cefepime, ceftolozane/tazobactam, and piperacillin/tazobactam (TZP) non-susceptible, respectively. Thighs of neutropenic, female, CD-1 mice (3 per group) were inoculated with ~107 CFU/mL of bacterial suspension 2 h prior to dosing. Mice received WCK 4282 HSR, FEP HSR, or saline (controls) for 24 h. WCK 4282 HSR and FEP HSR provided plasma exposures in mice that were similar in f%T &gt; MIC and fAUC to FEP-TZB 2 g-2 g and FEP 2 g, respectively, as IV infusions over 1.5 h q8h in humans. Bacterial densities and their changes at 24 h relative to 0 h controls were determined to assess efficacy and reported as mean±SD log10 CFU/thigh. Results Bacterial burdens were 5.81±0.36 at 0 h and 9.29±0.88 at 24 h in untreated controls. WCK 4282 produced potent activity against ESBL/CSase producing EB and PA with WCK 4282 MIC ≤ 16 mg/L; mean change in log10 CFU from 0 h was -1.70±0.77, while growth was observed with FEP alone. WCK 4282 produced variable activity against OXA-48-like harboring EB. Against KPC-harboring EB, WCK 4282 produced stasis to growth. Mean Log10 CFU changes are reported in Table 1 and Figure 1. Table 1. Comparative efficacy of FEP HSR and WCK 4282 HSR by genotypic β-lactamase Figure 1. Mean Change in log10CFU/thigh for 24 h controls, FEP HSR, and WCK 4282 HSR across the tested MIC distribution. Conclusion WCK 4282, a novel TZB containing regimen, resulted in enhance in vitro potency against ESBL/CSase and OXA-48-like producers. Humanized exposures of WCK 4282 produced substantial kill in vivo against ESBL/CSase producers with MICs ≤ 16 mg/L including FEP resistant/TZP non-susceptible PA. These data support further evaluations of WCK 4282 as a carbapenem-sparing regimen for ESBL/cephalosporinase harboring strains. Disclosures David P. Nicolau, PharmD, Cepheid (Other Financial or Material Support, Consultant, speaker bureau member or has received research support.)Merck & Co., Inc. (Consultant, Grant/Research Support, Speaker’s Bureau)Wockhardt (Grant/Research Support)


2021 ◽  
Vol 14 (8) ◽  
pp. 823
Author(s):  
Tsung-Ying Yang ◽  
Sung-Pin Tseng ◽  
Heather Nokulunga Dlamini ◽  
Po-Liang Lu ◽  
Lin Lin ◽  
...  

The increasing trend of carbapenem-resistant Acinetobacter baumannii (CRAB) worldwide has become a concern, limiting therapeutic alternatives and increasing morbidity and mortality rates. The immunomodulation agent ammonium trichloro (dioxoethylene-O,O′-) tellurate (AS101) was repurposed as an antimicrobial agent against CRAB. Between 2016 and 2018, 27 CRAB clinical isolates were collected in Taiwan. The in vitro antibacterial activities of AS101 were evaluated using broth microdilution, time-kill assay, reactive oxygen species (ROS) detection and electron microscopy. In vivo effectiveness was assessed using a sepsis mouse infection model. The MIC range of AS101 for 27 CRAB isolates was from 0.5 to 32 µg/mL, which is below its 50% cytotoxicity (approximately 150 µg/mL). Bactericidal activity was confirmed using a time-kill assay. The antibacterial mechanism of AS101 was the accumulation of the ROS and the disruption of the cell membrane, which, in turn, results in cell death. The carbapenemase-producing A. baumannii mouse sepsis model showed that AS101 was a better therapeutic effect than colistin. The mice survival rate after 120 h was 33% (4/12) in the colistin-treated group and 58% (7/12) in the high-dose AS101 (3.33 mg/kg/day) group. Furthermore, high-dose AS101 significantly decreased bacterial population in the liver, kidney and spleen (all p < 0.001). These findings support the concept that AS101 is an ideal candidate for further testing in future studies.


2021 ◽  
Author(s):  
Wei Hong Tay ◽  
Ronni A.G. da Silva ◽  
Foo Kiong Ho ◽  
Kelvin K.L. Chong ◽  
Alexander Ludwig ◽  
...  

Enterococcus faecalis is a frequent opportunistic pathogen of wounds, whose infections are associated with biofilm formation, persistence, and recalcitrance toward treatment. We have previously shown that E. faecalis wound infection persists for at least 7 days. Here we report that viable E. faecalis are present within both immune and non-immune cells at the wound site up to 5 days after infection, raising the prospect that intracellular persistence contributes to chronic E. faecalis infection. Using an in vitro keratinocyte infection model, we show that a subpopulation of E. faecalis becomes internalized via macropinocytosis into single membrane-bound compartments, where they can survive and replicate. These intracellular E. faecalis can persist in late endosomes up to 72 hours after infection in the absence of colocalization with the lysosomal protease cathepsin D or apparent fusion with the lysosome, suggesting that E. faecalis blocks endosomal maturation. Indeed, intracellular E. faecalis infection results in a marked reduction in Rab7 expression, a small GTPase required for endosome-lysosome fusion. Finally, we demonstrate that intracellular E. faecalis derived from infected keratinocytes are significantly more efficient in reinfecting new keratinocytes. Together, these data suggest that intracellular proliferation of E. faecalis may contribute to its persistence in the face of a robust immune response, providing a primed reservoir of bacteria for subsequent reinfection.


Author(s):  
Sergio Reyes ◽  
Kamilia Abdelraouf ◽  
David P Nicolau

Abstract Background Imipenem/relebactam is a carbapenem/β-lactamase inhibitor combination with in vitro activity against Pseudomonas aeruginosa and Enterobacterales, including KPC producers. Objectives To provide translational data to support the clinical utility of the imipenem/relebactam 500/250 mg q6h regimen using a human-simulated regimen (HSR) of imipenem/relebactam, compared with imipenem alone, against a phenotypically and genotypically diverse population of P. aeruginosa. Methods Twenty-nine P. aeruginosa isolates, including KPC (n = 6), PDC (n = 9), PAO (n = 4), GES (n = 5) and VIM (n = 1) producers, were used for the in vivo efficacy studies. Neutropenic mice were thigh-inoculated and randomized to receive HSRs of either imipenem 500 mg q6h, imipenem 1 g q8h, imipenem/relebactam 500/250 mg q6h or saline. Results Twenty-seven of the 29 isolates examined were imipenem resistant, with 24/29 isolates showing imipenem MICs of ≥32 mg/L. The addition of relebactam decreased the MICs up to 64-fold; imipenem/relebactam MICs ranged from 0.25 to &gt;32 mg/L. Efficacies of the imipenem monotherapies and the imipenem/relebactam therapy were comparable for the two imipenem-susceptible organisms. Among the imipenem-resistant isolates, an increased mean growth was observed in the imipenem 500 mg q6h HSR and 1 g q8h HSR treatment groups of 1.31 ± 1.01 and 0.18 ± 1.67 log10 cfu/thigh, respectively. In contrast, a ≥2 log reduction in bacterial density was observed in 27/29 (93%) of the imipenem-resistant isolates subjected to imipenem/relebactam 500/250 mg q6h HSR. Conclusions The imipenem/relebactam 500/250 mg q6h HSR demonstrated superior in vivo activity compared with the conventionally employed imipenem regimens against MDR P. aeruginosa over a wide range of imipenem/relebactam MICs.


Sign in / Sign up

Export Citation Format

Share Document