scholarly journals Molecular Characterization of Pneumococci with Efflux-Mediated Erythromycin Resistance and Identification of a Novel mef Gene Subclass, mef(I)

2005 ◽  
Vol 49 (12) ◽  
pp. 4999-5006 ◽  
Author(s):  
Ileana Cochetti ◽  
Manuela Vecchi ◽  
Marina Mingoia ◽  
Emily Tili ◽  
Maria R. Catania ◽  
...  

ABSTRACT The molecular genetics of macrolide resistance were analyzed in 49 clinical pneumococci (including an “atypical” bile-insoluble strain currently assigned to the new species Streptococcus pseudopneumoniae) with efflux-mediated erythromycin resistance (M phenotype). All test strains had the mef gene, identified as mef(A) in 30 isolates and mef(E) in 19 isolates (including the S. pseudopneumoniae strain) on the basis of PCR-restriction fragment length polymorphism analysis. Twenty-eight of the 30 mef(A) isolates shared a pulsed-field gel electrophoresis (PFGE) type corresponding to the England14-9 clone. Of those isolates, 27 (20 belonging to serotype 14) yielded multilocus sequence type ST9, and one isolate yielded a new sequence type. The remaining two mef(A) isolates had different PFGE types and yielded an ST9 type and a new sequence type. Far greater heterogeneity was displayed by the 19 mef(E) isolates, which fell into 11 PFGE types, 12 serotypes (though not serotype 14), and 12 sequence types (including two new ones and an undetermined type for the S. pseudopneumoniae strain). In all mef(A) pneumococci, the mef element was a regular Tn1207.1 transposon, whereas of the mef(E) isolates, 17 carried the mega element and 2 exhibited a previously unreported organization, with no PCR evidence of the other open reading frames of mega. The mef gene of these two isolates, which did not match with the mef(E) gene of the mega element (93.6% homology) and which exhibited comparable homology (91.4%) to the mef(A) gene of the Tn1207.1 transposon, was identified as a novel mef gene variant and was designated mef(I). While penicillin-nonsusceptible isolates (three resistant isolates and one intermediate isolate) were all mef(E) strains, tetracycline resistance was also detected in three mef(A) isolates, due to the tet(M) gene carried by a Tn916-like transposon. A similar mechanism accounted for resistance in four of the five tetracycline-resistant isolates carrying mef(E), in three of which mega was inserted in the Tn916-like transposon, giving rise to the composite element Tn2009. In the fifth mef(E)-positive tetracycline-resistant isolate (the S. pseudopneumoniae strain), tetracycline resistance was due to the presence of the tet(O) gene, apparently unlinked to mef(E).

2020 ◽  
Vol 9 (13) ◽  
Author(s):  
Klara Wang ◽  
Marielou G. Tamayo ◽  
Tiffany V. Penner ◽  
Bradley W. M. Cook ◽  
Deborah A. Court ◽  
...  

Enterobacter cloacae is an opportunistic pathogen that causes hospital-acquired infections in immunocompromised patients. Here, we describe vB_EclM_CIP9, a novel Enterobacter phage that infects a multidrug-resistant isolate of E. cloacae. Phage vB_EclM_CIP9 is a myovirus that has a 174,924-bp genome, with 296 predicted open reading frames.


2007 ◽  
Vol 51 (4) ◽  
pp. 1155-1163 ◽  
Author(s):  
Radosław Izdebski ◽  
Ewa Sadowy ◽  
Janusz Fiett ◽  
Paweł Grzesiowski ◽  
Marek Gniadkowski ◽  
...  

ABSTRACT The frequency of tetracycline resistance in Streptococcus pneumoniae isolates in Poland is one of the highest in Europe. The aim of this study was to analyze the clonal diversity and resistance determinants of tetracycline-nonsusceptible S. pneumoniae isolates identified in Poland and to investigate the effect of tetracycline resistance on their susceptibilities to tigecycline, doxycycline, and minocycline. We have analyzed 866 pneumococcal isolates collected from 1998 to 2003 from patients with respiratory tract diseases, and 242 of these (27.9%) were found to be resistant to tetracycline. All of the resistant isolates were characterized by testing of their susceptibilities to other antimicrobials, serotyping, pulsed-field gel electrophoresis (PFGE), and identification of tetracycline resistance genes and transposons. Selected isolates representing the main PFGE types were analyzed by multilocus sequence typing. Among the isolates investigated, 27 serotypes and 146 various PFGE patterns, grouped into 90 types, were discerned. The most common PFGE type, corresponding to serotype 19F and sequence type 423, was represented by 22.3% of all of the tetracycline-resistant isolates. The tet(M) gene was the sole resistance gene in the group of isolates studied, and in over 96% of the isolates, the Tn916 family of tet(M)-containing conjugative transposons was detected. Several isolates contained specific variants of the transposons, the Tn1545-like, Tn3872-like, or Tn2009-like element. The correlation between the MICs of tetracycline, doxycycline, and minocycline was revealed, whereas no cross-resistance to tetracycline and tigecycline was observed.


2019 ◽  
Author(s):  
Jinxiang Wang ◽  
Lei Sang ◽  
Shikun Sun ◽  
Yanfeng Chen ◽  
Dongjin Chen ◽  
...  

Abstract Background: Pasteurella multocida is one of the important pathogens that infect rabbits, causing major economic losses in commercial rabbit farming. In this study, 205 P. multocida isolates recovered from lungs of dead rabbits with respiratory disease were defined by capsular serogroups, lipopolysaccharide (LPS) genotypes and multi-locus sequence types, screened virulence factors and antimicrobial susceptibility. Results: The 205 isolates were assigned into 2 capsular types, A and D, and 2 LPS genotypes, L3 and L6. When combining capsular types with LPS genotypes, 4 serotypes were detected. A:L3 (51.22%, 105/205) was the most predominant serotype, followed by A:L6 (24.88%, 51/205), D:L6 (19.02%, 39/205) and D:L3 (4.88%, 10/205). The 205 isolates were grouped into 3 sequence types, ST10, ST11 and ST12. ST12 (56.10%, 115/205) was the most prevalent sequence type, followed by ST10 (24.88%, 51/205) and ST11 (19.02%, 39/205). In the 205 isolates, virulence associated genes ptfA , fur , hgbB , ompA , ompH and oma87 were positive in the PCR screening, whereas the toxA and tbpA genes were negative. Notably, the 156 capsular serogroup A isolates carried the pmHAS gene. All the 205 isolates were susceptible to most of the used antibiotics, except for streptomycin, gentamycin, kanamycin and ceftriaxone, and the resistance rates of which were 27.80%, 15.61%, 9.27% and 2.44%, respectively. Conclusions: This study, for the first time, described the prevalence and characteristics of P. multocida causing respiratory disease in rabbits in Fujian Province, which might be useful for tracking the epidemic strains and development of efficient vaccines and methods to prevent and control the pathogen.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Taryn B. T. Athey ◽  
Katy Vaillancourt ◽  
Michel Frenette ◽  
Nahuel Fittipaldi ◽  
Marcelo Gottschalk ◽  
...  

Recently, we reported the purification and characterization of three distinct lantibiotics (named suicin 90-1330, suicin 3908, and suicin 65) produced by Streptococcus suis. In this study, we investigated the distribution of the three suicin lantibiotic gene clusters among serotype 2 S. suis strains belonging to sequence type (ST) 25 and ST28, the two dominant STs identified in North America. The genomes of 102 strains were interrogated for the presence of suicin gene clusters encoding suicins 90-1330, 3908, and 65. The gene cluster encoding suicin 65 was the most prevalent and mainly found among ST25 strains. In contrast, none of the genes related to suicin 90-1330 production were identified in 51 ST25 strains nor in 35/51 ST28 strains. However, the complete suicin 90-1330 gene cluster was found in ten ST28 strains, although some genes in the cluster were truncated in three of these isolates. The vast majority (101/102) of S. suis strains did not possess any of the genes encoding suicin 3908. In conclusion, this study indicates heterogeneous distribution of suicin genes in S. suis.


2003 ◽  
Vol 47 (7) ◽  
pp. 2236-2241 ◽  
Author(s):  
Maria P. Montanari ◽  
Ileana Cochetti ◽  
Marina Mingoia ◽  
Pietro E. Varaldo

ABSTRACT Sixty-five clinical isolates of Streptococcus pneumoniae, all collected in Italy between 1999 and 2002 and resistant to both tetracycline (MIC, ≥8 μg/ml) and erythromycin (MIC, ≥1 μg/ml), were investigated. Of these strains, 11% were penicillin resistant and 23% were penicillin intermediate. With the use of the erythromycin-clindamycin-rokitamycin triple-disk test, 14 strains were assigned to the constitutive (cMLS) phenotype of macrolide resistance, 44 were assigned to the partially inducible (iMcLS) phenotype, 1 was assigned to the inducible (iMLS) phenotype, and 6 were assigned to the efflux-mediated (M) phenotype. In PCR assays, 64 of the 65 strains were positive for the tetracycline resistance gene tet(M), the exception being the one M isolate susceptible to kanamycin, whereas tet(K), tet(L), and tet(O) were never found. All cMLS, iMcLS, and iMLS isolates had the erythromycin resistance gene erm(B), and all M phenotype isolates had the mef(A) or mef(E) gene. No isolate had the erm(A) gene. The int-Tn gene, encoding the integrase of the Tn916-Tn1545 family of conjugative transposons, was detected in 62 of the 65 test strains. Typing assays showed the strains to be to a great extent unrelated. Of 16 different serotypes detected, the most numerous were 23F (n = 13), 19A (n = 10), 19F (n = 9), 6B (n = 8), and 14 (n = 6). Of 49 different pulsed-field gel electrophoresis types identified, the majority (n = 39) were represented by a single isolate, while the most numerous type included five isolates. By high-resolution restriction analysis of PCR amplicons with four endonucleases, the tet(M) loci from the 64 tet(M)-positive pneumococci were classified into seven distinct restriction types. Overall, a Tn1545-like transposon could reasonably account for tetracycline and erythromycin resistance in the vast majority of the pneumococci of cMLS, iMcLS, and iMLS phenotypes, whereas a Tn916-like transposon could account for tetracycline resistance in most M phenotype strains.


2015 ◽  
Vol 61 (2) ◽  
pp. 124-130
Author(s):  
Yongping Ma ◽  
Ting-ting Xie ◽  
Qiongwen Hu ◽  
Zongyin Qiu ◽  
Fangzhou Song

A resident plasmid, pBIF10, was isolated from Bifidobacterium longum B200304, and the full-length sequence of pBIF10 was analyzed. In this sequence, we identified at least 17 major open reading frames longer than 200 bp. A tetracycline resistance gene, tetQ, was identified and verified to confer antibiotic resistance to tetracycline. The plasmid replicon with replication protein B gene (repB) and a typical iteron was identified in pBIF10. An artificial clone vector was constructed with the replicon of pBIF10; the results showed that repB controlled plasmid replication in other bifidobacteria host cells at low transformation frequency. Taken together, the analysis and characterization of pBIF10 provided necessary information for the understanding of antibiotic resistance mediated by a plasmid in a Bifidobacterium strain. GC% and repB sequence analyses indicated that pBIF10 was a molecular hybrid of at least 2 other bacterial genera plasmids.


2016 ◽  
Vol 79 (9) ◽  
pp. 1630-1634 ◽  
Author(s):  
HONGNA ZHANG ◽  
ZHENZHEN ZHAI ◽  
QING LI ◽  
LINGHONG LIU ◽  
SHUYUAN GUO ◽  
...  

ABSTRACT Food-producing animals can serve as reservoirs for extended-spectrum β-lactamase (ESBL)–producing Escherichia coli. The present study aimed to characterize and compare ESBL-carrying E. coli isolates from both pigs and farm workers. Rectal swabs were obtained from 60 pigs on four pig-fattening farms (15 samples per farm), and rectal swabs were taken from 40 farm workers on these farms (10 samples per farm). ESBL-carrying E. coli isolates from the workers and pigs were characterized by ESBL genotype, antibiotic susceptibility, enterobacterial repetitive intergenic consensus type, and multilocus sequence type. ESBL-producing E. coli was detected in 34 (56.7%) of 60 pigs, and 20.0% (8 of 40) of the farm workers were positive for ESBL-producing E. coli. More importantly, ESBL-producing E. coli isolates with the same β-lactamase genes, antibiotic resistance profiles, enterobacterial repetitive intergenic consensus types, and multilocus sequence types were detected in both pigs and workers on the same pig farm. These findings were suggestive for transfer of ESBL-producing E. coli between animals and humans.


Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2876
Author(s):  
Angela Maria Catania ◽  
Tiziana Civera ◽  
Pierluigi Aldo Di Ciccio ◽  
Maria Ausilia Grassi ◽  
Patrizia Morra ◽  
...  

Processed cheese is a commercial product characterized by high microbiological stability and extended shelf life obtained through the application of severe heat treatment. However, spore-forming bacteria can survive through thermal processes. Among them, microorganisms belonging to Bacillus genus have been reported. In this study, we examined the microbiological population of the first hours’ production of processed cheeses in an Italian dairy plant during two seasons, between June and October 2020. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used to identify bacteria colonies, allowing the isolation of Bacillus cereus and Bacillussubtilis strains. These results were further confirmed by amplification and sequencing of 16 rRNA bacterial region. A multi-locus sequence type (MLST) analysis was performed to assess the genetic similarity among a selection of isolates. The fourteen B. cereus strains showed two sequence types: ST-32 was observed in only one strain and the ST-371 in the remaining thirteen isolates. On the contrary, all twenty-one B. subtlis strains, included in the study, showed a new allelic profile for the pycA gene, resulting in a new sequence type: ST-249. For B. cereus strains, analysis of toxin genes was performed. All isolates were positive for nheABC, entFM, and cytK, while hblABCD, bceT, and ces were not detected. Moreover, the biofilm-forming ability of B. cereus and B. subtilis strains was assessed, and all selected isolates proved to be biofilm formers (most of them were stronger producers). Considering the genetical similarity between isolates, jointly with the capacity to produce biofilm, the presence of a recurring Bacillus population could be hypothesized.


2019 ◽  
Author(s):  
Jinxiang Wang ◽  
Lei Sang ◽  
Shikun Sun ◽  
Yanfeng Chen ◽  
Dongjin Chen ◽  
...  

Abstract Background: Pasteurella multocida is one of the important pathogens that infect rabbits, causing major economic losses in commercial rabbit farming. In this study, 205 P. multocida isolates recovered from lungs of dead rabbits with respiratory disease were defined by capsular serogroups, lipopolysaccharide (LPS) genotypes, multi-locus sequence types and screened virulence factors by using PCR assays, and tested antimicrobial susceptibility. Results: The 205 isolates were assigned into 2 capsular types, A and D, and 2 LPS genotypes, L3 and L6. When combining capsular types with LPS genotypes, 4 serotypes were detected. A:L3 (51.22%, 105/205) was the most predominant serotype, followed by A:L6 (24.88%, 51/205), D:L6 (19.02%, 39/205) and D:L3 (4.88%, 10/205). The 205 isolates were grouped into 3 sequence types, ST10, ST11 and ST12. ST12 (56.10%, 115/205) was the most prevalent sequence type, followed by ST10 (24.88%, 51/205) and ST11 (19.02%, 39/205). In the 205 isolates, virulence associated genes ptfA, fur, hgbB, ompA, ompH and oma87 were positive in the PCR screening, whereas the toxA and tbpA genes were negative. Notably, the 156 capsular serogroup A isolates carried the pmHAS gene. All the 205 isolates were susceptible to most of the used antibiotics, except for streptomycin, gentamycin, kanamycin and ceftriaxone, and the resistance rates of which were 27.80%, 15.61%, 9.27% and 2.44%, respectively. Conclusions: This study, for the first time, described the prevalence and characteristics of P. multocida causing respiratory disease in rabbits in Fujian Province, which might be useful for tracking the epidemic strains and development of efficient vaccines and methods to prevent and control the pathogen.


2019 ◽  
Author(s):  
Jinxiang Wang ◽  
Lei Sang ◽  
Shikun Sun ◽  
Yanfeng Chen ◽  
Dongjin Chen ◽  
...  

Abstract Background Pasteurella multocida is one of the important pathogens infects rabbits, causing major economic losses in commercial rabbit farming. In this study, 205 P. multocida isolates recovered from lungs of dead rabbits with respiratory disease were defined capsular serogroups, lipopolysaccharide (LPS) genotypes and multi-locus sequence types, screened virulence factors, and tested antimicrobial susceptibility. Results The 205 isolates were assigned into 2 capsular types, A and D, and 2 LPS genotypes, L3 and L6. When combining capsular types with LPS genotypes, 4 serotypes were detected. A:L3 (51.22%, 105/205) was the most predominant serotype, followed by A:L6 (24.88%, 51/205), D:L6 (19.02%, 39/205), and D:L3 (4.88%, 10/205). The 205 isolates were grouped into 3 sequence types, ST10, ST11 and ST12. ST12 (56.10%, 115/205) was the most prevalent sequence type, followed by ST10 (24.88%, 51/205) and ST11 (19.02%, 39/205). In the 205 isolates, the virulence genes of ptfA, fur, hgbB, ompA, ompH and oma87 were positive, whereas the toxA and tbpA genes were negative. Notably, the 156 capsular serogroup A isolates carried pmHAS gene. All the 205 isolates were susceptible to most of the used antibiotics, except for streptomycin, gentamycin, kanamycin and ceftriaxone, and the resistance rates of which were 27.80%, 15.61%, 9.27% and 2.44%, respectively. Conclusions This study, for the first time, described the prevalence and characteristics of P. multocida causing respiratory disease in rabbits in Fujian Province, which might be useful for tracking the epidemic strains and development of efficient vaccines and methods to prevent and control the pathogen.


Sign in / Sign up

Export Citation Format

Share Document