scholarly journals Metabolic Capacity of Sinorhizobium (Ensifer) meliloti Strains as Determined by Phenotype MicroArray Analysis

2009 ◽  
Vol 75 (16) ◽  
pp. 5396-5404 ◽  
Author(s):  
Emanuele G. Biondi ◽  
Enrico Tatti ◽  
Diego Comparini ◽  
Elisa Giuntini ◽  
Stefano Mocali ◽  
...  

ABSTRACT Sinorhizobium meliloti is a soil bacterium that fixes atmospheric nitrogen in plant roots. The high genetic diversity of its natural populations has been the subject of extensive analysis. Recent genomic studies of several isolates revealed a high content of variable genes, suggesting a correspondingly large phenotypic differentiation among strains of S. meliloti. Here, using the Phenotype MicroArray (PM) system, hundreds of different growth conditions were tested in order to compare the metabolic capabilities of the laboratory reference strain Rm1021 with those of four natural S. meliloti isolates previously analyzed by comparative genomic hybridization (CGH). The results of PM analysis showed that most phenotypic differences involved carbon source utilization and tolerance to osmolytes and pH, while fewer differences were scored for nitrogen, phosphorus, and sulfur source utilization. Only the variability of the tested strain in tolerance to sodium nitrite and ammonium sulfate of pH 8 was hypothesized to be associated with the genetic polymorphisms detected by CGH analysis. Colony and cell morphologies and the ability to nodulate Medicago truncatula plants were also compared, revealing further phenotypic diversity. Overall, our results suggest that the study of functional (phenotypic) variability of S. meliloti populations is an important and complementary step in the investigation of genetic polymorphism of rhizobia and may help to elucidate rhizobial evolutionary dynamics, including adaptation to diverse environments.

PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250084
Author(s):  
Gayatri Shankar Chilambi ◽  
Hayley R. Nordstrom ◽  
Daniel R. Evans ◽  
Regis P. Kowalski ◽  
Deepinder K. Dhaliwal ◽  
...  

Enterococcus faecalis are hospital-associated opportunistic pathogens and also causative agents of post-operative endophthalmitis. Patients with enterococcal endophthalmitis often have poor visual outcomes, despite appropriate antibiotic therapy. Here we investigated the genomic and phenotypic characteristics of E. faecalis isolates collected from 13 patients treated at the University of Pittsburgh Medical Center Eye Center over 19 years. Comparative genomic analysis indicated that patients were infected with E. faecalis belonging to diverse multi-locus sequence types (STs) and resembled E. faecalis sampled from clinical, commensal, and environmental sources. We identified known E. faecalis virulence factors and antibiotic resistance genes in each genome, including genes conferring resistance to aminoglycosides, erythromycin, and tetracyclines. We assessed all isolates for their cytolysin production, biofilm formation, and antibiotic susceptibility, and observed phenotypic differences between isolates. Fluoroquinolone and cephalosporin susceptibilities were particularly variable between isolates, as were biofilm formation and cytolysin production. In addition, we found evidence of E. faecalis adaptation during recurrent endophthalmitis by identifying genetic variants that arose in sequential isolates sampled over eight months from the same patient. We identified a mutation in the DNA mismatch repair gene mutS that was associated with an increased rate of spontaneous mutation in the final isolate from the patient. Overall this study documents the genomic and phenotypic variability among E. faecalis causing endophthalmitis, as well as possible adaptive mechanisms underlying bacterial persistence during recurrent ocular infection.


2019 ◽  
Author(s):  
Tanita Wein ◽  
Tal Dagan

AbstractPopulation bottlenecks leading to a drastic reduction of the population size are common in the evolutionary dynamics of natural populations; their occurrence is known to have implications for genome evolution due to genetic drift, the consequent reduction in genetic diversity and the rate of adaptation. Nevertheless, an empirical characterization of the effect of population bottleneck size on evolutionary dynamics of bacteria is currently lacking. Here we show that selective conditions have a stronger effect on the evolutionary history of bacteria in comparison to genetic drift following population bottlenecks. We evolved Escherichia coli populations under three different population bottlenecks (small, medium, large) in two temperature regimes (37°C and 20°C). We find a high genetic diversity in the large in comparison to the small bottleneck size. Nonetheless, the cold temperature led to reduced genetic diversity in all bottleneck sizes, hence, the temperature has a stronger effect on the genetic diversity in comparison to the bottleneck size. A comparison of the fitness gain among the evolved populations reveals a similar pattern where the temperature has a significant effect on the fitness. Our study demonstrates that population bottlenecks are an important determinant of the evolvability in bacteria; their consequences depend on the selective conditions and are best understood via their effect on the standing genetic variation.


2015 ◽  
Vol 112 (21) ◽  
pp. 6676-6681 ◽  
Author(s):  
Adriaan van der Graaf ◽  
René Wardenaar ◽  
Drexel A. Neumann ◽  
Aaron Taudt ◽  
Ruth G. Shaw ◽  
...  

Stochastic changes in cytosine methylation are a source of heritable epigenetic and phenotypic diversity in plants. Using the model plant Arabidopsis thaliana, we derive robust estimates of the rate at which methylation is spontaneously gained (forward epimutation) or lost (backward epimutation) at individual cytosines and construct a comprehensive picture of the epimutation landscape in this species. We demonstrate that the dynamic interplay between forward and backward epimutations is modulated by genomic context and show that subtle contextual differences have profoundly shaped patterns of methylation diversity in A. thaliana natural populations over evolutionary timescales. Theoretical arguments indicate that the epimutation rates reported here are high enough to rapidly uncouple genetic from epigenetic variation, but low enough for new epialleles to sustain long-term selection responses. Our results provide new insights into methylome evolution and its population-level consequences.


2018 ◽  
Vol 40 (3) ◽  
Author(s):  
Carolina Ribeiro Diniz Boaventura Novaes ◽  
Elias Emanuel Silva Mota ◽  
Evandro Novaes ◽  
Mariana Pires de Campos Telles ◽  
Lázaro José Chaves

Abstract Eugenia dysenterica DC. (cagaita tree) is a fruit tree native to the Brazilian Cerrado. It is a promising species for cultivation, but little basic information exists on the phenotypic diversity and quantitative variation of its fruits and seeds at a population scale. Thus, the present study proposes to estimate the phenotypic parameters of the species’ fruits and seeds based on the variability among mother plants and among subpopulations, thereby aiming to increase knowledge for breeding and conservation of the species. For this, 25 natural subpopulations (local populations) were sampled in five Brazilian states. Within each subpopulation, 20 fruits were collected from each of six sampled mother plants. Data for biomass, transverse and longitudinal lengths of the fruits and seeds were subjected to estimates of descriptive parameters, correlation and hierarchical analysis of variance (ANOVA). Significant variation, including high levels of phenotypic variation, was observed among mother plants within the subpopulations and between the subpopulations. The high variation and the formation of phenotypically divergent groups are important elements for the breeding of cagaita tree, whose mother plants can now be selected for the traits studied. Phenotypic divergence between populations (PST) can be used as an indicator of the structuring of the phenotypic variation of the species in its natural area of occurrence.


Author(s):  
Tanita Wein ◽  
Tal Dagan

Abstract Population bottlenecks leading to a drastic reduction of the population size are common in the evolutionary dynamics of natural populations; their occurrence is known to have implications for genome evolution due to genetic drift, the consequent reduction in genetic diversity and the rate of adaptation. Nevertheless, an empirical characterization of the effect of population bottleneck size on evolutionary dynamics of bacteria is currently lacking. Here we show that selective conditions have a stronger effect on the evolutionary history of bacteria in comparison to population bottlenecks. We evolved Escherichia coli populations under three different population bottleneck sizes (small, medium, large) in two temperature regimes (37 °C and 20 °C). We find a high genetic diversity in the large in comparison to the small bottleneck size. Nonetheless, the cold temperature led to reduced genetic diversity regardless the bottleneck size, hence, the temperature has a stronger effect on the genetic diversity in comparison to the bottleneck size. A comparison of the fitness gain among the evolved populations reveals a similar pattern where the temperature has a significant effect on the fitness. Our study demonstrates that population bottlenecks are an important determinant of bacterial evolvability; their consequences depend on the selective conditions and are best understood via their effect on the standing genetic variation.


2020 ◽  
Author(s):  
Gayatri Shankar Chilambi ◽  
Hayley R. Nordstrom ◽  
Daniel R. Evans ◽  
Regis P. Kowalski ◽  
Deepinder K. Dhaliwal ◽  
...  

ABSTRACTEnterococcus faecalis are hospital-associated opportunistic pathogens and also causative agents of post-operative endophthalmitis. Patients with enterococcal endophthalmitis often have poor visual outcomes, despite appropriate antibiotic therapy. Here we investigated the genomic and phenotypic characteristics of E. faecalis isolates collected from 13 patients treated at the University of Pittsburgh Medical Center Eye Center over 19 years. Comparative genomic analysis indicated that patients were infected with E. faecalis of diverse multi-locus sequence types (STs) previously associated with clinical, commensal, and environmental sources. We identified known E. faecalis virulence factors and antibiotic resistance genes in each genome, including genes conferring resistance to aminoglycosides, erythromycin, and tetracyclines. We assessed all isolates for their cytolysin production, biofilm formation, and antibiotic susceptibility, and observed phenotypic differences between isolates. Fluoroquinolone and cephalosporin susceptibilities were particularly variable, as were biofilm formation and cytolysin production. In addition, we found evidence of E. faecalis adaptation during recurrent endophthalmitis by identifying genetic variants that arose in sequential isolates sampled over eight-months from the same patient. We identified a mutation in the DNA mismatch repair gene mutS that was associated with a hypermutator phenotype in the final isolate from the patient, which was also more resistant to ceftazidime. Overall this study documents the genomic and phenotypic variability among E. faecalis causing endophthalmitis, as well as possible adaptive mechanisms underlying bacterial persistence during recurrent ocular infection.IMPORTANCEBacterial endophthalmitis is a sight-threatening infection of the inside of the eye. Enterococcus faecalis cause endophthalmitis occasionally, but when they do the infections are often severe. Here we investigated the genomes, antibiotic susceptibilities, and virulence-associated traits among E. faecalis collected from 13 patients with post-operative endophthalmitis. We wondered whether there were common bacterial factors that might explain why enterococcal endophthalmitis is so destructive to ocular tissues. Instead we found that E. feacalis isolated from endophthalmitis were genetically and phenotypically diverse; isolates belonged to a variety of genetic lineages and showed varying levels of antibiotic resistance and biofilm formation. We also undertook further characterization of three closely related E. faecalis isolates from a patient with recurrent endophthalmitis, and found that a hypermutator strain emerged during persistent infection. Hypermutators have been found in a variety of other infection contexts; here we describe what we believe is the first case of a hypermutator arising during ocular infection.


2007 ◽  
Vol 20 (11) ◽  
pp. 1421-1430 ◽  
Author(s):  
Christian Sohlenkamp ◽  
Kanaan A. Galindo-Lagunas ◽  
Ziqiang Guan ◽  
Pablo Vinuesa ◽  
Sally Robinson ◽  
...  

Lysyl-phosphatidylglycerol (LPG) is a well-known membrane lipid in several gram-positive bacteria but is almost unheard of in gram-negative bacteria. In Staphylococcus aureus, the gene product of mprF is responsible for LPG formation. Low pH-inducible genes, termed lpiA, have been identified in the gram-negative α-proteobacteria Rhizobium tropici and Sinorhizobium medicae in screens for acid-sensitive mutants and they encode homologs of MprF. An analysis of the sequenced bacterial genomes reveals that genes coding for homologs of MprF from S. aureus are present in several classes of organisms throughout the bacterial kingdom. In this study, we show that the expression of lpiA from R. tropici in the heterologous hosts Escherichia coli and Sinorhizobium meliloti causes formation of LPG. A wild-type strain of R. tropici forms LPG (about 1% of the total lipids) when the cells are grown in minimal medium at pH 4.5 but not when grown in minimal medium at neutral pH or in complex tryptone yeast (TY) medium at either pH. LPG biosynthesis does not occur when lpiA is deleted and is restored upon complementation of lpiA-deficient mutants with a functional copy of the lpiA gene. When grown in the low-pH medium, lpiA-deficient rhizobial mutants are over four times more susceptible to the cationic peptide polymyxin B than the wild type.


Biology ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 471
Author(s):  
Camino Gutiérrez-Corbo ◽  
Bárbara Domínguez-Asenjo ◽  
María Martínez-Valladares ◽  
Yolanda Pérez-Pertejo ◽  
Carlos García-Estrada ◽  
...  

Diseases caused by trypanosomatids (Sleeping sickness, Chagas disease, and leishmaniasis) are a serious public health concern in low-income endemic countries. These diseases are produced by single-celled parasites with a diploid genome (although aneuploidy is frequent) organized in pairs of non-condensable chromosomes. To explain the way they reproduce through the analysis of natural populations, the theory of strict clonal propagation of these microorganisms was taken as a rule at the beginning of the studies, since it partially justified their genomic stability. However, numerous experimental works provide evidence of sexual reproduction, thus explaining certain naturally occurring events that link the number of meiosis per mitosis and the frequency of mating. Recent techniques have demonstrated genetic exchange between individuals of the same species under laboratory conditions, as well as the expression of meiosis specific genes. The current debate focuses on the frequency of genomic recombination events and its impact on the natural parasite population structure. This paper reviews the results and techniques used to demonstrate the existence of sex in trypanosomatids, the inheritance of kinetoplast DNA (maxi- and minicircles), the impact of genetic exchange in these parasites, and how it can contribute to the phenotypic diversity of natural populations.


Genetics ◽  
1993 ◽  
Vol 135 (3) ◽  
pp. 923-930 ◽  
Author(s):  
M J Nauta ◽  
R F Hoekstra

Abstract Spore killing in ascomycetes is a special form of segregation distortion. When a strain with the Killer genotype is crossed to a Sensitive type, spore killing is expressed by asci with only half the number of ascospores as usual, all surviving ascospores being of the Killer type. Using population genetic modeling, this paper explores conditions for invasion of Spore killers and for polymorphism of Killers, Sensitives and Resistants (which neither kill, nor get killed), as found in natural populations. The models show that a population with only Killers and Sensitives can never be stable. The invasion of Killers and stable polymorphism only occur if Killers have some additional advantage during the process of spore killing. This may be due to the effects of local sib competition or some kind of "heterozygous" advantage in the stage of ascospore formation or in the short diploid stage of the life cycle. This form of segregation distortion appears to be essentially different from other, well-investigated forms, and more field data are needed for a better understanding of spore killing.


Sign in / Sign up

Export Citation Format

Share Document