scholarly journals The Genome of the Anaerobic Fungus Orpinomyces sp. Strain C1A Reveals the Unique Evolutionary History of a Remarkable Plant Biomass Degrader

2013 ◽  
Vol 79 (15) ◽  
pp. 4620-4634 ◽  
Author(s):  
Noha H. Youssef ◽  
M. B. Couger ◽  
Christopher G. Struchtemeyer ◽  
Audra S. Liggenstoffer ◽  
Rolf A. Prade ◽  
...  

ABSTRACTAnaerobic gut fungi represent a distinct early-branching fungal phylum (Neocallimastigomycota) and reside in the rumen, hindgut, and feces of ruminant and nonruminant herbivores. The genome of an anaerobic fungal isolate,Orpinomycessp. strain C1A, was sequenced using a combination of Illumina and PacBio single-molecule real-time (SMRT) technologies. The large genome (100.95 Mb, 16,347 genes) displayed extremely low G+C content (17.0%), large noncoding intergenic regions (73.1%), proliferation of microsatellite repeats (4.9%), and multiple gene duplications. Comparative genomic analysis identified multiple genes and pathways that are absent in Dikarya genomes but present in early-branching fungal lineages and/or nonfungal Opisthokonta. These included genes for posttranslational fucosylation, the production of specific intramembrane proteases and extracellular protease inhibitors, the formation of a complete axoneme and intraflagellar trafficking machinery, and a near-complete focal adhesion machinery. Analysis of the lignocellulolytic machinery in the C1A genome revealed an extremely rich repertoire, with evidence of horizontal gene acquisition from multiple bacterial lineages. Experimental analysis indicated that strain C1A is a remarkable biomass degrader, capable of simultaneous saccharification and fermentation of the cellulosic and hemicellulosic fractions in multiple untreated grasses and crop residues examined, with the process significantly enhanced by mild pretreatments. This capability, acquired during its separate evolutionary trajectory in the rumen, along with its resilience and invasiveness compared to prokaryotic anaerobes, renders anaerobic fungi promising agents for consolidated bioprocessing schemes in biofuels production.

2017 ◽  
Author(s):  
Ian Goodhead ◽  
Frances Blow ◽  
Philip Brownridge ◽  
Margaret Hughes ◽  
John Kenny ◽  
...  

AbstractThe majority of bacterial genomes have high coding efficiencies, but there are some genomes of intracellular bacteria that have low gene density. The genome of the endosymbiont Sodalis glossinidius contains almost 50% pseudogenes containing mutations that putatively silence them at the genomic level. We have applied multiple ‘omic strategies, combining: Illumina and Pacific Biosciences Single-Molecule Real Time DNA-sequencing and annotation; stranded RNA-sequencing; and proteome analysis to better understand the transcriptional and translational landscape of Sodalis pseudogenes, and potential mechanisms for their control. Between 53% and 74% of the Sodalis transcriptome remains active in cell-free culture. Mean sense transcription from Coding Domain Sequences (CDS) is four-times greater than that from pseudogenes. Comparative genomic analysis of six Illumina-sequenced Sodalis isolates from different host Glossina species shows pseudogenes make up ~40% of the 2,729 genes in the core genome, suggesting that they are stable and/or Sodalis is a recent introduction across the Glossina genus as a facultative symbiont. These data further shed light on the importance of transcriptional and translational control in deciphering host-microbe interactions. The combination of genomics, transcriptomics and proteomics give a multidimensional perspective for studying prokaryotic genomes with a view to elucidating evolutionary adaptation to novel environmental niches.ImportanceBacterial genes are generally 1Kb in length, organized efficiently (i.e. with few gaps between genes or operons), and few open reading frames (ORFs) lack any predicted function. Intracellular bacteria have been removed from extracellular selection pressures acting on pathways of declining importance to fitness and thus, these bacteria tend to delete redundant genes in favour of smaller functional repertoires. In the genomes of endosymbionts with a recent evolutionary relationship with their host, however, this process of genome reduction is not complete; Genes and pathways may be at an intermediate stage, undergoing mutation linked to reduced selection and small population numbers being vertically transmitted from mother to offspring in their hosts, resulting in an increase in abundance of pseudogenes and reduced coding capacities. A greater knowledge of the genomic architecture of persistent pseudogenes, with respect to their DNA structure, mRNA transcription and even putative translation to protein products, will lead to a better understanding of the evolutionary trajectory of endosymbiont genomes, many of which have important roles in arthropod ecology.


2018 ◽  
Vol 62 (11) ◽  
Author(s):  
Glen P. Carter ◽  
James E. Ussher ◽  
Anders Gonçalves Da Silva ◽  
Sarah L. Baines ◽  
Helen Heffernan ◽  
...  

ABSTRACT Coagulase-negative staphylococci (CoNS), such as Staphylococcus capitis, are major causes of bloodstream infections in neonatal intensive care units (NICUs). Recently, a distinct clone of S. capitis (designated S. capitis NRCS-A) has emerged as an important pathogen in NICUs internationally. Here, 122 S. capitis isolates from New Zealand (NZ) underwent whole-genome sequencing (WGS), and these data were supplemented with publicly available S. capitis sequence reads. Phylogenetic and comparative genomic analyses were performed, as were phenotypic assessments of antimicrobial resistance, biofilm formation, and plasmid segregational stability on representative isolates. A distinct lineage of S. capitis was identified in NZ associated with neonates and the NICU environment. Isolates from this lineage produced increased levels of biofilm, displayed higher levels of tolerance to chlorhexidine, and were multidrug resistant. Although similar to globally circulating NICU-associated S. capitis strains at a core-genome level, NZ NICU S. capitis isolates carried a novel stably maintained multidrug-resistant plasmid that was not present in non-NICU isolates. Neonatal blood culture isolates were indistinguishable from environmental S. capitis isolates found on fomites, such as stethoscopes and neonatal incubators, but were generally distinct from those isolates carried by NICU staff. This work implicates the NICU environment as a potential reservoir for neonatal sepsis caused by S. capitis and highlights the capacity of genomics-based tracking and surveillance to inform future hospital infection control practices aimed at containing the spread of this important neonatal pathogen.


2021 ◽  
Vol 10 (46) ◽  
Author(s):  
Kentaro Miyazaki ◽  
Natsuko Tokito

Complete genome resequencing was conducted for Thermus thermophilus strain TMY by hybrid assembly of Oxford Nanopore Technologies long-read and MGI short-read data. Errors in the previously reported genome sequence determined by PacBio technology alone were corrected, allowing for high-quality comparative genomic analysis of closely related T. thermophilus genomes.


2017 ◽  
Vol 83 (11) ◽  
Author(s):  
Tristan Cerisy ◽  
Tiffany Souterre ◽  
Ismael Torres-Romero ◽  
Magali Boutard ◽  
Ivan Dubois ◽  
...  

ABSTRACT Increasing the resistance of plant-fermenting bacteria to lignocellulosic inhibitors is useful to understand microbial adaptation and to develop candidate strains for consolidated bioprocessing. Here, we study and improve inhibitor resistance in Clostridium phytofermentans (also called Lachnoclostridium phytofermentans), a model anaerobe that ferments lignocellulosic biomass. We survey the resistance of this bacterium to a panel of biomass inhibitors and then evolve strains that grow in increasing concentrations of the lignin phenolic, ferulic acid, by automated, long-term growth selection in an anaerobic GM3 automat. Ultimately, strains resist multiple inhibitors and grow robustly at the solubility limit of ferulate while retaining the ability to ferment cellulose. We analyze genome-wide transcription patterns during ferulate stress and genomic variants that arose along the ferulate growth selection, revealing how cells adapt to inhibitors through changes in gene dosage and regulation, membrane fatty acid structure, and the surface layer. Collectively, this study demonstrates an automated framework for in vivo directed evolution of anaerobes and gives insight into the genetic mechanisms by which bacteria survive exposure to chemical inhibitors. IMPORTANCE Fermentation of plant biomass is a key part of carbon cycling in diverse ecosystems. Further, industrial biomass fermentation may provide a renewable alternative to fossil fuels. Plants are primarily composed of lignocellulose, a matrix of polysaccharides and polyphenolic lignin. Thus, when microorganisms degrade lignocellulose to access sugars, they also release phenolic and acidic inhibitors. Here, we study how the plant-fermenting bacterium Clostridium phytofermentans resists plant inhibitors using the lignin phenolic, ferulic acid. We examine how the cell responds to abrupt ferulate stress by measuring changes in gene expression. We evolve increasingly resistant strains by automated, long-term cultivation at progressively higher ferulate concentrations and sequence their genomes to identify mutations associated with acquired ferulate resistance. Our study develops an inhibitor-resistant bacterium that ferments cellulose and provides insights into genomic evolution to resist chemical inhibitors.


2019 ◽  
Vol 87 (10) ◽  
Author(s):  
Tracy H. Hazen ◽  
David A. Rasko

ABSTRACT Enteropathogenic Escherichia coli (EPEC) is a leading cause of moderate to severe diarrhea among young children in developing countries, and EPEC isolates can be subdivided into two groups. Typical EPEC (tEPEC) bacteria are characterized by the presence of both the locus of enterocyte effacement (LEE) and the plasmid-encoded bundle-forming pilus (BFP), which are involved in adherence and translocation of type III effectors into the host cells. Atypical EPEC (aEPEC) bacteria also contain the LEE but lack the BFP. In the current report, we describe the complete genome of outbreak-associated aEPEC isolate E110019, which carries four plasmids. Comparative genomic analysis demonstrated that the type III secreted effector EspT gene, an autotransporter gene, a hemolysin gene, and putative fimbrial genes are all carried on plasmids. Further investigation of 65 espT-containing E. coli genomes demonstrated that different espT alleles are associated with multiple plasmids that differ in their overall gene content from the E110019 espT-containing plasmid. EspT has been previously described with respect to its role in the ability of E110019 to invade host cells. While other type III secreted effectors of E. coli have been identified on insertion elements and prophages of the chromosome, we demonstrated in the current study that the espT gene is located on multiple unique plasmids. These findings highlight a role of plasmids in dissemination of a unique E. coli type III secreted effector that is involved in host invasion and severe diarrheal illness.


mSystems ◽  
2020 ◽  
Vol 5 (5) ◽  
Author(s):  
Zhiqiu Yin ◽  
Si Zhang ◽  
Yi Wei ◽  
Meng Wang ◽  
Shuangshuang Ma ◽  
...  

The taxonomic position of P. shigelloides has been the subject of debate for a long time, and until now, the evolutionary dynamics and pathogenesis of P. shigelloides were unclear. In this study, pan-genome analysis indicated extensive genetic diversity and the presence of large and variable gene repertoires. Our results revealed that horizontal gene transfer was the focal driving force for the genetic diversity of the P. shigelloides pan-genome and might have contributed to the emergence of novel properties. Vibrionaceae and Aeromonadaceae were found to be the predominant donor taxa for horizontal genes, which might have caused the taxonomic confusion historically. Comparative genomic analysis revealed the potential of P. shigelloides to cause intestinal and invasive diseases. Our results could advance the understanding of the evolution and pathogenesis of P. shigelloides, particularly in elucidating the role of horizontal gene transfer and investigating virulence-related elements.


2012 ◽  
Vol 78 (7) ◽  
pp. 2264-2271 ◽  
Author(s):  
Allan L. Delisle ◽  
Ming Guo ◽  
Natalia I. Chalmers ◽  
Gerard J. Barcak ◽  
Geneviève M. Rousseau ◽  
...  

ABSTRACTM102AD is the new designation for aStreptococcus mutansphage described in 1993 as phage M102. This change was necessitated by the genome analysis of anotherS. mutansphage named M102, which revealed differences from the genome sequence reported here. Additional host range analyses confirmed thatS. mutansphage M102AD infects only a few serotype c strains. Phage M102AD adsorbed very slowly to its host, and it cannot adsorb to serotype e and f strains ofS. mutans. M102AD adsorption was blocked by c-specific antiserum. Phage M102AD also adsorbed equally well to heat-treated and trypsin-treated cells, suggesting carbohydrate receptors. Saliva and polysaccharide production did not inhibit plaque formation. The genome of this siphophage consisted of a linear, double-stranded, 30,664-bp DNA molecule, with a GC content of 39.6%. Analysis of the genome extremities indicated the presence of a 3′-overhangcossite that was 11 nucleotides long. Bioinformatic analyses identified 40 open reading frames, all in the same orientation. No lysogeny-related genes were found, indicating that phage M102AD is strictly virulent. No obvious virulence factor gene candidates were found. Twelve proteins were identified in the virion structure by mass spectrometry. Comparative genomic analysis revealed a close relationship betweenS. mutansphages M102AD and M102 as well as withStreptococcus thermophilusphages. This study also highlights the importance of conducting research with biological materials obtained from recognized microbial collections.


mSystems ◽  
2019 ◽  
Vol 4 (5) ◽  
Author(s):  
Haijian Du ◽  
Wenyan Zhang ◽  
Wensi Zhang ◽  
Weijia Zhang ◽  
Hongmiao Pan ◽  
...  

ABSTRACT The evolution of microbial magnetoreception (or magnetotaxis) is of great interest in the fields of microbiology, evolutionary biology, biophysics, geomicrobiology, and geochemistry. Current genomic data from magnetotactic bacteria (MTB), the only prokaryotes known to be capable of sensing the Earth’s geomagnetic field, suggests an ancient origin of magnetotaxis in the domain Bacteria. Vertical inheritance, followed by multiple independent magnetosome gene cluster loss, is considered to be one of the major forces that drove the evolution of magnetotaxis at or above the class or phylum level, although the evolutionary trajectories at lower taxonomic ranks (e.g., within the class level) remain largely unstudied. Here we report the isolation, cultivation, and sequencing of a novel magnetotactic spirillum belonging to the genus Terasakiella (Terasakiella sp. strain SH-1) within the class Alphaproteobacteria. The complete genome sequence of Terasakiella sp. strain SH-1 revealed an unexpected duplication event of magnetosome genes within the mamAB operon, a group of genes essential for magnetosome biomineralization and magnetotaxis. Intriguingly, further comparative genomic analysis suggests that the duplication of mamAB genes is a common feature in the genomes of alphaproteobacterial MTB. Taken together, with the additional finding that gene duplication appears to have also occurred in some magnetotactic members of the Deltaproteobacteria, our results indicate that gene duplication plays an important role in the evolution of magnetotaxis in the Alphaproteobacteria and perhaps the domain Bacteria. IMPORTANCE A diversity of organisms can sense the geomagnetic field for the purpose of navigation. Magnetotactic bacteria are the most primitive magnetism-sensing organisms known thus far and represent an excellent model system for the study of the origin, evolution, and mechanism of microbial magnetoreception (or magnetotaxis). The present study is the first report focused on magnetosome gene cluster duplication in the Alphaproteobacteria, which suggests the important role of gene duplication in the evolution of magnetotaxis in the Alphaproteobacteria and perhaps the domain Bacteria. A novel scenario for the evolution of magnetotaxis in the Alphaproteobacteria is proposed and may provide new insights into evolution of magnetoreception of higher species.


2017 ◽  
Vol 5 (1) ◽  
Author(s):  
C. Bodi Winn ◽  
J. Dzink-Fox ◽  
Y. Feng ◽  
Z. Shen ◽  
V. Bakthavatchalu ◽  
...  

ABSTRACT In collaboration with the CDC’s Streptococcus Laboratory, we report here the whole-genome sequences of seven Streptococcus agalactiae bacteria isolated from laboratory-reared Long-Evans rats. Four of the S. agalactiae isolates were associated with morbidity accompanied by endocarditis, metritis, and fatal septicemia, providing an opportunity for comparative genomic analysis of this opportunistic pathogen.


2015 ◽  
Vol 83 (10) ◽  
pp. 4165-4173 ◽  
Author(s):  
Benard W. Kulohoma ◽  
Jennifer E. Cornick ◽  
Chrispin Chaguza ◽  
Feyruz Yalcin ◽  
Simon R. Harris ◽  
...  

Streptococcus pneumoniaeis a nasopharyngeal commensal that occasionally invades normally sterile sites to cause bloodstream infection and meningitis. Although the pneumococcal population structure and evolutionary genetics are well defined, it is not clear whether pneumococci that cause meningitis are genetically distinct from those that do not. Here, we used whole-genome sequencing of 140 isolates ofS. pneumoniaerecovered from bloodstream infection (n= 70) and meningitis (n= 70) to compare their genetic contents. By fitting a double-exponential decaying-function model, we show that these isolates share a core of 1,427 genes (95% confidence interval [CI], 1,425 to 1,435 genes) and that there is no difference in the core genome or accessory gene content from these disease manifestations. Gene presence/absence alone therefore does not explain the virulence behavior of pneumococci that reach the meninges. Our analysis, however, supports the requirement of a range of previously described virulence factors and vaccine candidates for both meningitis- and bacteremia-causing pneumococci. This high-resolution view suggests that, despite considerable competency for genetic exchange, all pneumococci are under considerable pressure to retain key components advantageous for colonization and transmission and that these components are essential for access to and survival in sterile sites.


Sign in / Sign up

Export Citation Format

Share Document