scholarly journals Biochemical Characterization of CYP505D6, a Self-Sufficient Cytochrome P450 from the White-Rot FungusPhanerochaete chrysosporium

2018 ◽  
Vol 84 (22) ◽  
Author(s):  
Kiyota Sakai ◽  
Fumiko Matsuzaki ◽  
Lisa Wise ◽  
Yu Sakai ◽  
Sadanari Jindou ◽  
...  

ABSTRACTThe activity of a self-sufficient cytochrome P450 enzyme, CYP505D6, from the lignin-degrading basidiomycetePhanerochaete chrysosporiumwas characterized. Recombinant CYP505D6 was produced inEscherichia coliand purified. In the presence of NADPH, CYP505D6 used a series of saturated fatty alcohols with C9–18carbon chain lengths as the substrates. Hydroxylation occurred at the ω-1 to ω-6 positions of such substrates with C9–15carbon chain lengths, except for 1-dodecanol, which was hydroxylated at the ω-1 to ω-7 positions. Fatty acids were also substrates of CYP505D6. Based on the sequence alignment, the corresponding amino acid of Tyr51, which is located at the entrance to the active-site pocket in CYP102A1, was Val51 in CYP505D6. To understand the diverse hydroxylation mechanism, wild-type CYP505D6 and its V51Y variant and wild-type CYP102A1 and its Y51V variant were generated, and the products of their reaction with dodecanoic acid were analyzed. Compared with wild-type CYP505D6, its V51Y variant generated few products hydroxylated at the ω-4 to ω-6 positions. The products generated by wild-type CYP102A1 were hydroxylated at the ω-1 to ω-4 positions, whereas its Y51V variant generated ω-1 to ω-7 hydroxydodecanoic acids. These observations indicated that Val51 plays an important role in determining the regiospecificity of fatty acid hydroxylation, at least that at the ω-4 to ω-6 positions. Aromatic compounds, such as naphthalene and 1-naphthol, were also hydroxylated by CYP505D6. These findings highlight a unique broad substrate spectrum of CYP505D6, rendering it an attractive candidate enzyme for the biotechnological industry.IMPORTANCEPhanerochaete chrysosporiumis a white-rot fungus whose metabolism of lignin, aromatic pollutants, and lipids has been most extensively studied. This fungus harbors 154 cytochrome P450-encoding genes in the genome. As evidenced in this study,P. chrysosporiumCYP505D6, a fused protein of P450 and its reductase, hydroxylates fatty alcohols (C9–15) and fatty acids (C9–15) at the ω-1 to ω-7 or ω-1 to ω-6 positions, respectively. Naphthalene and 1-naphthol were also hydroxylated, indicating that the substrate specificity of CYP505D6 is broader than those of the known fused proteins CYP102A1 and CYP505A1. The substrate versatility of CYP505D6 makes this enzyme an attractive candidate for biotechnological applications.

mBio ◽  
2014 ◽  
Vol 5 (1) ◽  
Author(s):  
Swapna Bhat ◽  
Tilman Ahrendt ◽  
Christina Dauth ◽  
Helge B. Bode ◽  
Lawrence J. Shimkets

ABSTRACTMyxococcus xanthusproduces several extracellular signals that guide fruiting body morphogenesis and spore differentiation. Mutants defective in producing a signal may be rescued by codevelopment with wild-type cells or cell fractions containing the signal. In this paper, we identify two molecules that rescue development of the E signal-deficient mutant LS1191 at physiological concentrations,iso15:0 branched-chain fatty acid (FA) and 1-iso15:0-alkyl-2,3-di-iso15:0-acyl glycerol (TG1), a development-specific monoalkyl-diacylglycerol. The physiological concentrations of the bioactive lipids were determined by mass spectrometry from developing wild-type cells using chemically synthesized standards. Synthetic TG1 restored fruiting body morphogenesis and sporulation and activated the expression of the developmentally regulated gene with locus tagMXAN_2146at physiological concentrations, unlike its nearly identical tri-iso15:0 triacylglycerol (TAG) counterpart, which has an ester linkage instead of an ether linkage.iso15:0 FA restored development at physiological concentrations, unlike palmitic acid, a straight-chain fatty acid. The addition of either lipid stimulates cell shortening, with an 87% decline in membrane surface area, concomitantly with the production of lipid bodies at each cell pole and in the center of the cell. We suggest that cells produce triacylglycerol from membrane phospholipids. Bioactive lipids may be released byprogrammedcelldeath (PCD), which claims up to 80% of developing cells, since cells undergoing PCD produce lipid bodies before lysing.IMPORTANCELike mammalian adipose tissue, many of theM. xanthuslipid body lipids are triacylglycerols (TAGs), containing ester-linked fatty acids. In both systems, ester-linked fatty acids are retrieved from TAGs with lipases and consumed by the fatty acid degradation cycle. Both mammals andM. xanthusalso produce lipids containing ether-linked fatty alcohols with alkyl or vinyl linkages, such as plasmalogens. Alkyl and vinyl linkages are not hydrolyzed by lipases, and no clear role has emerged for lipids bearing them. For example, plasmalogen deficiency in mice has detrimental consequences to spermatocyte development, myelination, axonal survival, eye development, and long-term survival, though the precise reasons remain elusive. Lipids containing alkyl- and vinyl-linked fatty alcohols are development-specific products inM. xanthus. Here, we show that one of them rescues the development of E signal-producing mutants at physiological concentrations.


1997 ◽  
Vol 16 (1_suppl) ◽  
pp. 123-130 ◽  
Author(s):  
F. Alan Andersen

Cetyl Esters is a synthetic wax composed of a mixture of esters ofsaturated fatty acids and fatty alcohols with carbon chain lengths between 14 and 18. Cetyl Esters is currently used as a skin conditioning agent-emollient in over 200 cosmetic formulations at concentrations of up to 7%. The esters that are found in Cetyl Esters include Cetyl Palmitate, Cetyl Stearate, Myristyl Myristate, Myristyl Stearate, Cetyl Myristate, and Stearyl Stearate. Safety data on four of these (Cetyl Palmitate, Cetyl Stearate, Myristyl Myristate, and Myristyl Stearate) have previously been reviewed and are summarized in this report; overall, the data show no systemic toxicity, no sensitization or photosensitization, and little irritation. Because of the structural similarity of Cetyl Myristate and Stearyl Stearate to these four ingredients, it is expected that they would behave in a similarly nontoxic manner. Therefore, it was concluded that Cetyl Esters (as a mixture of all six ingredients) is safe as used in cosmetics.


2016 ◽  
Vol 78 (5-6) ◽  
Author(s):  
Mohd Basyaruddin Abdul Rahman ◽  
Siti Salhah Othman ◽  
Noor Mona Md Yunus

The enzymatic selectivity of Lipase from Candida rugosa immobilized onto a calcined layered double hydroxide (CLDHs-CRL) towards the chain-length of fatty acids and alcohols in the synthesis of fatty acid esters was investigated.  The results showed that CMAN-CRL catalyzed the esterification process with fatty acids of medium chain lengths (C10-C14) effectively while, CNAN-CRL and CZAN-CRL exhibited high percentage conversion in fatty acids with carbon chain lengths of C8-C12 and C10-C18, respectively. In the alcohol selectivity study, CMAN-CRL showed high selectivity toward alcohols with carbon chain lengths of C4, C6 and C10.  On the other hand, both CNAN-CRL and CZAN-CRL exhibited rather low selectivity towards longer carbon chain length of alcohols. 


1988 ◽  
Vol 253 (3) ◽  
pp. 645-650 ◽  
Author(s):  
A Poulos ◽  
P Sharp ◽  
D Johnson ◽  
C Easton

The n-6 tetra- and pentaenoic fatty acids with carbon chain lengths greater than 32 found in normal brain are located predominantly in a separable species of phosphatidylcholine. A similar phospholipid is found in increased amounts in the brain of peroxisome-deficient (Zellweger's syndrome) patients, but the fatty acid composition differs in that penta- and hexaenoic derivatives predominate. Our data strongly suggest that the polyenoic very long chain fatty acids are confined to the sn-1 position of the glycerol moiety, while the sn-2 position is enriched in saturated, monounsaturated and polyunsaturated fatty acids with less than 24 carbon atoms. It is postulated that these unusual molecular species of phosphatidylcholine may play some, as yet undefined, role in brain physiology.


1986 ◽  
Vol 235 (2) ◽  
pp. 607-610 ◽  
Author(s):  
A Poulos ◽  
P Sharp ◽  
H Singh ◽  
D Johnson ◽  
A Fellenberg ◽  
...  

The brains of patients with inherited abnormalities in peroxisomal structure and function contain greatly increased proportions of a homologous series of unique polyenoic fatty acids with carbon chain lengths ranging from 26 to 38. Based on evidence by chemical ionization and electron impact mass spectrometry before and after catalytic hydrogenation, and argentation t.l.c., these lipids have been tentatively identified as 26:5, 28:5, 30:5, 30:6, 30:7, 32:5, 32:6, 32:7, 34:5 and 34:6 fatty acids. A further two fatty acids eluting at very high temperatures from gas chromatography columns have been tentatively identified on the basis of their chemical ionization mass spectra as 36:6 and 38:6 fatty acids.


1990 ◽  
Vol 265 (3) ◽  
pp. 763-767 ◽  
Author(s):  
B S Robinson ◽  
D W Johnson ◽  
A Poulos

Rat brain has been shown to contain polyenoic very-long-chain fatty acids (VLCFA) belonging to the n-3 and n-6 series with four, five and six double bonds and even-carbon chain lengths from 24 to 38. These fatty acids are almost exclusively located in unusual molecular species of phosphatidylcholine at the sn-1 position of the glycerol backbone, whereas saturated, monoenoic and polyenoic fatty acids with less than 24 carbon atoms are present at the sn-2 position. Polyenoic VLCFA phosphatidylcholine in neonatal rat brain is enriched with n-6 pentaenoic and n-3 hexaenoic VLCFA with up to 36 carbon atoms, whereas the corresponding phospholipid in adult rat brain mainly contains n-6 tetraenoic and n-3 pentaenoic VLCFA with up to 38 carbon atoms. The total amount of polyenoic VLCFA associated with phosphatidylcholine is highest in the brain of immature animals. Polyenoic VLCFA phosphatidylcholine appears to be predominantly confined to nervous tissue in rats, and it is envisaged that this phospholipid is of physiological significance.


2016 ◽  
Vol 45 (5) ◽  
pp. 330-334 ◽  
Author(s):  
Peng Yin ◽  
Can Xue ◽  
Bin Guo

Purpose The purpose of this paper is to study the influence of different carbon chain lengths in coupling agents on the water resistance and compatibility of modified long afterglow phosphors and attempt to obtain their modification model and mechanism. Design/methodology/approach Three saturated-fatty-acid (caprylic, lauric, stearic acid)-based Al-Zr CAs (coupling agent) was synthesised and applied to modify the long afterglow phosphors SrMgAl4O8:Eu2+,Dy3+. Findings Results show that the coated amount on phosphors decreased from 13.41 to 6.53 per cent with the increased carbon chain length of fatty acid, and the better water resistant and suitability with organic resin can be obtained by lauric-based Al-Zr CA. Originality/value Considering that the decomposition process of modified phosphor was related with the decomposition performance of corresponding coupling agents and original phosphor, a method was first proposed to calculate the coated amount on phosphors by thermogravimetric analyser parameters.


Sign in / Sign up

Export Citation Format

Share Document