scholarly journals Stable, Site-Specific Fluorescent Tagging Constructs Optimized for Burkholderia Species

2010 ◽  
Vol 76 (22) ◽  
pp. 7635-7640 ◽  
Author(s):  
Michael H. Norris ◽  
Yun Kang ◽  
Bruce Wilcox ◽  
Tung T. Hoang

ABSTRACT Several vectors that facilitate stable fluorescent labeling of Burkholderia pseudomallei and Burkholderia thailandensis were constructed. These vectors combined the effectiveness of the mini-Tn7 site-specific transposition system with fluorescent proteins optimized for Burkholderia spp., enabling bacterial tracking during cellular infection.

Genetics ◽  
2021 ◽  
Author(s):  
Jérôme Goudeau ◽  
Catherine S Sharp ◽  
Jonathan Paw ◽  
Laura Savy ◽  
Manuel D Leonetti ◽  
...  

Abstract We create and share a new red fluorophore, along with a set of strains, reagents and protocols, to make it faster and easier to label endogenous C. elegans proteins with fluorescent tags. CRISPR-mediated fluorescent labeling of C. elegans proteins is an invaluable tool, but it is much more difficult to insert fluorophore-size DNA segments than it is to make small gene edits. In principle, high-affinity asymmetrically split fluorescent proteins solve this problem in C. elegans: the small fragment can quickly and easily be fused to almost any protein of interest, and can be detected wherever the large fragment is expressed and complemented. However, there is currently only one available strain stably expressing the large fragment of a split fluorescent protein, restricting this solution to a single tissue (the germline) in the highly autofluorescent green channel. No available C. elegans lines express unbound large fragments of split red fluorescent proteins, and even state-of-the-art split red fluorescent proteins are dim compared to the canonical split-sfGFP protein. In this study, we engineer a bright, high-affinity new split red fluorophore, split-wrmScarlet. We generate transgenic C. elegans lines to allow easy single-color labeling in muscle or germline cells and dual-color labeling in somatic cells. We also describe a novel expression strategy for the germline, where traditional expression strategies struggle. We validate these strains by targeting split-wrmScarlet to several genes whose products label distinct organelles, and we provide a protocol for easy, cloning-free CRISPR/Cas9 editing. As the collection of split-FP strains for labeling in different tissues or organelles expands, we will post updates at doi.org/10.5281/zenodo.3993663


2020 ◽  
Vol 202 (23) ◽  
Author(s):  
Alessandra Vitale ◽  
Sarah Paszti ◽  
Kohei Takahashi ◽  
Masanori Toyofuku ◽  
Gabriella Pessi ◽  
...  

ABSTRACT Burkholderia thailandensis is a soil saprophyte that is closely related to the pathogen Burkholderia pseudomallei, the etiological agent of melioidosis in humans. The environmental niches and infection sites occupied by these bacteria are thought to contain only limited concentrations of oxygen, where they can generate energy via denitrification. However, knowledge of the underlying molecular basis of the denitrification pathway in these bacteria is scarce. In this study, we employed a transposon sequencing (Tn-Seq) approach to identify genes conferring a fitness benefit for anaerobic growth of B. thailandensis. Of the 180 determinants identified, several genes were shown to be required for growth under denitrifying conditions: the nitrate reductase operon narIJHGK2K1, the aniA gene encoding a previously unknown nitrite reductase, and the petABC genes encoding a cytochrome bc1, as well as three novel regulators that control denitrification. Our Tn-Seq data allowed us to reconstruct the entire denitrification pathway of B. thailandensis and shed light on its regulation. Analyses of growth behaviors combined with measurements of denitrification metabolites of various mutants revealed that nitrate reduction provides sufficient energy for anaerobic growth, an important finding in light of the fact that some pathogenic Burkholderia species can use nitrate as a terminal electron acceptor but are unable to complete denitrification. Finally, we demonstrated that a nitrous oxide reductase mutant is not affected for anaerobic growth but is defective in biofilm formation and accumulates N2O, which may play a role in the dispersal of B. thailandensis biofilms. IMPORTANCE Burkholderia thailandensis is a soil-dwelling saprophyte that is often used as surrogate of the closely related pathogen Burkholderia pseudomallei, the causative agent of melioidosis and a classified biowarfare agent. Both organisms are adapted to grow under oxygen-limited conditions in rice fields by generating energy through denitrification. Microoxic growth of B. pseudomallei is also considered essential for human infections. Here, we have used a Tn-Seq approach to identify the genes encoding the enzymes and regulators required for growth under denitrifying conditions. We show that a mutant that is defective in the conversion of N2O to N2, the last step in the denitrification process, is unaffected in microoxic growth but is severely impaired in biofilm formation, suggesting that N2O may play a role in biofilm dispersal. Our study identified novel targets for the development of therapeutic agents to treat meliodiosis.


2019 ◽  
Vol 6 (2) ◽  
Author(s):  
Georgina Meza-Radilla ◽  
Ausel Mendez-Canarios ◽  
Juan Xicohtencatl-Cortes ◽  
Marcos R Escobedo-Guerra ◽  
Alfredo G Torres ◽  
...  

Abstract Burkholderia pseudomallei and Burkholderia cepacia complex are poorly studied in Mexico. The genotypic analysis of 38 strains isolated from children with pneumonia were identified and showed that both Burkholderia groups were present in patients. From our results, it is plausible to suggest that new species are among the analyzed strains.


2015 ◽  
Vol 113 (3) ◽  
pp. 497-502 ◽  
Author(s):  
Marie-Aude Plamont ◽  
Emmanuelle Billon-Denis ◽  
Sylvie Maurin ◽  
Carole Gauron ◽  
Frederico M. Pimenta ◽  
...  

This paper presents Yellow Fluorescence-Activating and absorption-Shifting Tag (Y-FAST), a small monomeric protein tag, half as large as the green fluorescent protein, enabling fluorescent labeling of proteins in a reversible and specific manner through the reversible binding and activation of a cell-permeant and nontoxic fluorogenic ligand (a so-called fluorogen). A unique fluorogen activation mechanism based on two spectroscopic changes, increase of fluorescence quantum yield and absorption red shift, provides high labeling selectivity. Y-FAST was engineered from the 14-kDa photoactive yellow protein by directed evolution using yeast display and fluorescence-activated cell sorting. Y-FAST is as bright as common fluorescent proteins, exhibits good photostability, and allows the efficient labeling of proteins in various organelles and hosts. Upon fluorogen binding, fluorescence appears instantaneously, allowing monitoring of rapid processes in near real time. Y-FAST distinguishes itself from other tagging systems because the fluorogen binding is highly dynamic and fully reversible, which enables rapid labeling and unlabeling of proteins by addition and withdrawal of the fluorogen, opening new exciting prospects for the development of multiplexing imaging protocols based on sequential labeling.


BioMetals ◽  
2014 ◽  
Vol 27 (5) ◽  
pp. 949-956 ◽  
Author(s):  
Sakawrat Kanthawong ◽  
Aekkalak Puknun ◽  
Jan G. M. Bolscher ◽  
Kamran Nazmi ◽  
Jan van Marle ◽  
...  

2015 ◽  
Vol 53 (3) ◽  
pp. 1009-1011 ◽  
Author(s):  
Timothy J. J. Inglis ◽  
Dorothee R. Hahne ◽  
Adam J. Merritt ◽  
Michael W. Clarke

Solid-phase microextraction gas chromatography-mass spectrometry (SPME-GCMS) was used to show that dimethyl sulfide produced byBurkholderia pseudomalleiis responsible for its unusual truffle-like smell and distinguishes the species fromBurkholderia thailandensis. SPME-GCMS can be safely used to detect dimethyl sulfide produced by agar-grownB. pseudomallei.


2018 ◽  
Vol 200 (14) ◽  
Author(s):  
Jennifer R. Klaus ◽  
Jacqueline Deay ◽  
Benjamin Neuenswander ◽  
Wyatt Hursh ◽  
Zhe Gao ◽  
...  

ABSTRACT Burkholderia pseudomallei , the causative agent of melioidosis, encodes almost a dozen predicted polyketide (PK) biosynthetic gene clusters. Many of these are regulated by LuxR-I-type acyl-homoserine (AHL) quorum-sensing systems. One of the PK gene clusters, the mal gene cluster, is conserved in the close relative Burkholderia thailandensis . The B. thailandensis mal genes code for the cytotoxin malleilactone and are regulated by a genetically linked LuxR-type transcription factor, MalR. Although AHLs typically interact with LuxR-type proteins to modulate gene transcription, the B. thailandensis MalR does not appear to be an AHL receptor. Here, we characterize the mal genes and MalR in B. pseudomallei . We use chemical analyses to demonstrate that the B. pseudomallei mal genes code for malleilactone. Our results show that MalR and the mal genes contribute to the ability of B. pseudomallei to kill Caenorhabditis elegans . In B. thailandensis , antibiotics like trimethoprim can activate MalR by driving transcription of the mal genes, and we demonstrate that some of the same antibiotics induce expression of B. pseudomallei malR . We also demonstrate that B. pseudomallei MalR does not respond directly to AHLs. Our results suggest that MalR is indirectly repressed by AHLs, possibly through a repressor, ScmR. We further show that malleilactone is a B. pseudomallei virulence factor and provide the foundation for understanding how malleilactone contributes to the pathology of melioidosis infections. IMPORTANCE Many bacterially produced polyketides are cytotoxic to mammalian cells and are potentially important contributors to pathogenesis during infection. We are interested in the polyketide gene clusters present in Burkholderia pseudomallei , which causes the often-fatal human disease melioidosis. Using knowledge gained by studies in the close relative Burkholderia thailandensis , we show that one of the B. pseudomallei polyketide biosynthetic clusters produces a cytotoxic polyketide, malleilactone. Malleilactone contributes to B. pseudomallei virulence in a Caenorhabditis elegans infection model and is regulated by an orphan LuxR family quorum-sensing transcription factor, MalR. Our studies demonstrate that malleilactone biosynthesis or MalR could be new targets for developing therapeutics to treat melioidosis.


Sign in / Sign up

Export Citation Format

Share Document