scholarly journals Mapping of the Denitrification Pathway in Burkholderia thailandensis by Genome-Wide Mutant Profiling

2020 ◽  
Vol 202 (23) ◽  
Author(s):  
Alessandra Vitale ◽  
Sarah Paszti ◽  
Kohei Takahashi ◽  
Masanori Toyofuku ◽  
Gabriella Pessi ◽  
...  

ABSTRACT Burkholderia thailandensis is a soil saprophyte that is closely related to the pathogen Burkholderia pseudomallei, the etiological agent of melioidosis in humans. The environmental niches and infection sites occupied by these bacteria are thought to contain only limited concentrations of oxygen, where they can generate energy via denitrification. However, knowledge of the underlying molecular basis of the denitrification pathway in these bacteria is scarce. In this study, we employed a transposon sequencing (Tn-Seq) approach to identify genes conferring a fitness benefit for anaerobic growth of B. thailandensis. Of the 180 determinants identified, several genes were shown to be required for growth under denitrifying conditions: the nitrate reductase operon narIJHGK2K1, the aniA gene encoding a previously unknown nitrite reductase, and the petABC genes encoding a cytochrome bc1, as well as three novel regulators that control denitrification. Our Tn-Seq data allowed us to reconstruct the entire denitrification pathway of B. thailandensis and shed light on its regulation. Analyses of growth behaviors combined with measurements of denitrification metabolites of various mutants revealed that nitrate reduction provides sufficient energy for anaerobic growth, an important finding in light of the fact that some pathogenic Burkholderia species can use nitrate as a terminal electron acceptor but are unable to complete denitrification. Finally, we demonstrated that a nitrous oxide reductase mutant is not affected for anaerobic growth but is defective in biofilm formation and accumulates N2O, which may play a role in the dispersal of B. thailandensis biofilms. IMPORTANCE Burkholderia thailandensis is a soil-dwelling saprophyte that is often used as surrogate of the closely related pathogen Burkholderia pseudomallei, the causative agent of melioidosis and a classified biowarfare agent. Both organisms are adapted to grow under oxygen-limited conditions in rice fields by generating energy through denitrification. Microoxic growth of B. pseudomallei is also considered essential for human infections. Here, we have used a Tn-Seq approach to identify the genes encoding the enzymes and regulators required for growth under denitrifying conditions. We show that a mutant that is defective in the conversion of N2O to N2, the last step in the denitrification process, is unaffected in microoxic growth but is severely impaired in biofilm formation, suggesting that N2O may play a role in biofilm dispersal. Our study identified novel targets for the development of therapeutic agents to treat meliodiosis.

2013 ◽  
Vol 63 (Pt_5) ◽  
pp. 1824-1833 ◽  
Author(s):  
Dennis A. Bazylinski ◽  
Timothy J. Williams ◽  
Christopher T. Lefèvre ◽  
Denis Trubitsyn ◽  
Jiasong Fang ◽  
...  

A magnetotactic bacterium, designated strain MV-1T, was isolated from sulfide-rich sediments in a salt marsh near Boston, MA, USA. Cells of strain MV-1T were Gram-negative, and vibrioid to helicoid in morphology. Cells were motile by means of a single polar flagellum. The cells appeared to display a transitional state between axial and polar magnetotaxis: cells swam in both directions, but generally had longer excursions in one direction than the other. Cells possessed a single chain of magnetosomes containing truncated hexaoctahedral crystals of magnetite, positioned along the long axis of the cell. Strain MV-1T was a microaerophile that was also capable of anaerobic growth on some nitrogen oxides. Salinities greater than 10 % seawater were required for growth. Strain MV-1T exhibited chemolithoautotrophic growth on thiosulfate and sulfide with oxygen as the terminal electron acceptor (microaerobic growth) and on thiosulfate using nitrous oxide (N2O) as the terminal electron acceptor (anaerobic growth). Chemo-organoautotrophic and methylotrophic growth was supported by formate under microaerobic conditions. Autotrophic growth occurred via the Calvin–Benson–Bassham cycle. Chemo-organoheterotrophic growth was supported by various organic acids and amino acids, under microaerobic and anaerobic conditions. Optimal growth occurred at pH 7.0 and 26–28 °C. The genome of strain MV-1T consisted of a single, circular chromosome, about 3.7 Mb in size, with a G+C content of 52.9–53.5 mol%.Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain MV-1T belongs to the family Rhodospirillaceae within the Alphaproteobacteria , but is not closely related to the genus Magnetospirillum . The name Magnetovibrio blakemorei gen. nov., sp. nov. is proposed for strain MV-1T. The type strain of Magnetovibrio blakemorei is MV-1T ( = ATCC BAA-1436T  = DSM 18854T).


2013 ◽  
Vol 79 (18) ◽  
pp. 5566-5575 ◽  
Author(s):  
Jens Buchholz ◽  
Andreas Schwentner ◽  
Britta Brunnenkan ◽  
Christina Gabris ◽  
Simon Grimm ◽  
...  

ABSTRACTExchange of the nativeCorynebacterium glutamicumpromoter of theaceEgene, encoding the E1p subunit of the pyruvate dehydrogenase complex (PDHC), with mutateddapApromoter variants led to a series ofC. glutamicumstrains with gradually reduced growth rates and PDHC activities. Upon overexpression of thel-valine biosynthetic genesilvBNCE, all strains producedl-valine. Among these strains,C. glutamicum aceEA16 (pJC4ilvBNCE) showed the highest biomass and product yields, and thus it was further improved by additional deletion of thepqoandppcgenes, encoding pyruvate:quinone oxidoreductase and phosphoenolpyruvate carboxylase, respectively. In fed-batch fermentations at high cell densities,C. glutamicum aceEA16 Δpqo Δppc(pJC4ilvBNCE) produced up to 738 mM (i.e., 86.5 g/liter)l-valine with an overall yield (YP/S) of 0.36 mol per mol of glucose and a volumetric productivity (QP) of 13.6 mM per h [1.6 g/(liter × h)]. Additional inactivation of the transaminase B gene (ilvE) and overexpression ofilvBNCDinstead ofilvBNCEtransformed thel-valine-producing strain into a 2-ketoisovalerate producer, excreting up to 303 mM (35 g/liter) 2-ketoisovalerate with aYP/Sof 0.24 mol per mol of glucose and aQPof 6.9 mM per h [0.8 g/(liter × h)]. The replacement of theaceEpromoter by thedapA-A16 promoter in the twoC. glutamicuml-lysine producers DM1800 and DM1933 improved the production by 100% and 44%, respectively. These results demonstrate thatC. glutamicumstrains with reduced PDHC activity are an excellent platform for the production of pyruvate-derived products.


Microbiology ◽  
2020 ◽  
Vol 166 (9) ◽  
pp. 880-890 ◽  
Author(s):  
Hiroshi Ogasawara ◽  
Toshiyuki Ishizuka ◽  
Shuhei Hotta ◽  
Michiko Aoki ◽  
Tomohiro Shimada ◽  
...  

Under stressful conditions, Escherichia coli forms biofilm for survival by sensing a variety of environmental conditions. CsgD, the master regulator of biofilm formation, controls cell aggregation by directly regulating the synthesis of Curli fimbriae. In agreement of its regulatory role, as many as 14 transcription factors (TFs) have so far been identified to participate in regulation of the csgD promoter, each monitoring a specific environmental condition or factor. In order to identify the whole set of TFs involved in this typical multi-factor promoter, we performed in this study ‘promoter-specific transcription-factor’ (PS-TF) screening in vitro using a set of 198 purified TFs (145 TFs with known functions and 53 hitherto uncharacterized TFs). A total of 48 TFs with strong binding to the csgD promoter probe were identified, including 35 known TFs and 13 uncharacterized TFs, referred to as Y-TFs. As an attempt to search for novel regulators, in this study we first analysed a total of seven Y-TFs, including YbiH, YdcI, YhjC, YiaJ, YiaU, YjgJ and YjiR. After analysis of curli fimbriae formation, LacZ-reporter assay, Northern-blot analysis and biofilm formation assay, we identified at least two novel regulators, repressor YiaJ (renamed PlaR) and activator YhjC (renamed RcdB), of the csgD promoter.


2015 ◽  
Vol 59 (8) ◽  
pp. 4817-4825 ◽  
Author(s):  
Xinlong He ◽  
Feng Lu ◽  
Fenglai Yuan ◽  
Donglin Jiang ◽  
Peng Zhao ◽  
...  

ABSTRACTChronic wound infections are associated with biofilm formation, which in turn has been correlated with drug resistance. However, the mechanism by which bacteria form biofilms in clinical environments is not clearly understood. This study was designed to investigate the biofilm formation potency ofAcinetobacter baumanniiand the potential association of biofilm formation with genes encoding efflux pumps, quorum-sensing regulators, and outer membrane proteins. A total of 48 clinically isolatedA. baumanniistrains, identified by enterobacterial repetitive intergenic consensus (ERIC)-PCR as types A-II, A-III, and A-IV, were analyzed. Three representative strains, which were designatedA. baumanniiABR2, ABR11, and ABS17, were used to evaluate antimicrobial susceptibility, biofilm inducibility, and gene transcription (abaI,adeB,adeG,adeJ,carO, andompA). A significant increase in the MICs of different classes of antibiotics was observed in the biofilm cells. The formation of a biofilm was significantly induced in all the representative strains exposed to levofloxacin. The levels of gene transcription varied between bacterial genotypes, antibiotics, and antibiotic concentrations. The upregulation ofadeGcorrelated with biofilm induction. The consistent upregulation ofadeGandabaIwas detected in A-III-typeA. baumanniiin response to levofloxacin and meropenem (1/8 to 1/2× the MIC), conditions which resulted in the greatest extent of biofilm induction. This study demonstrates a potential role of the AdeFGH efflux pump in the synthesis and transport of autoinducer molecules during biofilm formation, suggesting a link between low-dose antimicrobial therapy and a high risk of biofilm infections caused byA. baumannii. This study provides useful information for the development of antibiofilm strategies.


2012 ◽  
Vol 78 (15) ◽  
pp. 5060-5069 ◽  
Author(s):  
Morten T. Rybtke ◽  
Bradley R. Borlee ◽  
Keiji Murakami ◽  
Yasuhiko Irie ◽  
Morten Hentzer ◽  
...  

ABSTRACTThe increased tolerance toward the host immune system and antibiotics displayed by biofilm-formingPseudomonas aeruginosaand other bacteria in chronic infections such as cystic fibrosis bronchopneumonia is of major concern. Targeting of biofilm formation is believed to be a key aspect in the development of novel antipathogenic drugs that can augment the effect of classic antibiotics by decreasing antimicrobial tolerance. The second messenger cyclic di-GMP is a positive regulator of biofilm formation, and cyclic di-GMP signaling is now regarded as a potential target for the development of antipathogenic compounds. Here we describe the development of fluorescent monitors that can gauge the cellular level of cyclic di-GMP inP. aeruginosa. We have created cyclic di-GMP level reporters by transcriptionally fusing the cyclic di-GMP-responsivecdrApromoter to genes encoding green fluorescent protein. We show that the reporter constructs give a fluorescent readout of the intracellular level of cyclic di-GMP inP. aeruginosastrains with different levels of cyclic di-GMP. Furthermore, we show that the reporters are able to detect increased turnover of cyclic di-GMP mediated by treatment ofP. aeruginosawith the phosphodiesterase inducer nitric oxide. Considering that biofilm formation is a necessity for the subsequent development of a chronic infection and therefore a pathogenicity trait, the reporters display a significant potential for use in the identification of novel antipathogenic compounds targeting cyclic di-GMP signaling, as well as for use in research aiming at understanding the biofilm biology ofP. aeruginosa.


2016 ◽  
Vol 198 (19) ◽  
pp. 2643-2650 ◽  
Author(s):  
Boo Shan Tseng ◽  
Charlotte D. Majerczyk ◽  
Daniel Passos da Silva ◽  
Josephine R. Chandler ◽  
E. Peter Greenberg ◽  
...  

ABSTRACTMembers of the genusBurkholderiaare known to be adept at biofilm formation, which presumably assists in the survival of these organisms in the environment and the host. Biofilm formation has been linked to quorum sensing (QS) in several bacterial species. In this study, we characterizedBurkholderia thailandensisbiofilm development under flow conditions and sought to determine whether QS contributes to this process.B. thailandensisbiofilm formation exhibited an unusual pattern: the cells formed small aggregates and then proceeded to produce mature biofilms characterized by “dome” structures filled with biofilm matrix material. We showed that this process was dependent on QS.B. thailandensishas three acyl-homoserine lactone (AHL) QS systems (QS-1, QS-2, and QS-3). An AHL-negative strain produced biofilms consisting of cell aggregates but lacking the matrix-filled dome structures. This phenotype was rescued via exogenous addition of the three AHL signals. Of the threeB. thailandensisQS systems, we show that QS-1 is required for proper biofilm development, since abtaR1mutant, which is defective in QS-1 regulation, forms biofilms without these dome structures. Furthermore, our data show that the wild-type biofilm biomass, as well as the material inside the domes, stains with a fucose-binding lectin. ThebtaR1mutant biofilms, however, are negative for fucose staining. This suggests that the QS-1 system regulates the production of a fucose-containing exopolysaccharide in wild-type biofilms. Finally, we present data showing that QS ability during biofilm development produces a biofilm that is resistant to dispersion under stress conditions.IMPORTANCEThe saprophyteBurkholderia thailandensisis a close relative of the pathogenic bacteriumBurkholderia pseudomallei, the causative agent of melioidosis, which is contracted from its environmental reservoir. Since most bacteria in the environment reside in biofilms,B. thailandensisis an ideal model organism for investigating questions inBurkholderiaphysiology. In this study, we characterizedB. thailandensisbiofilm development and sought to determine if quorum sensing (QS) contributes to this process. Our work shows thatB. thailandensisproduces biofilms with unusual dome structures under flow conditions. Our findings suggest that these dome structures are filled with a QS-regulated, fucose-containing exopolysaccharide that may be involved in the resilience ofB. thailandensisbiofilms against changes in the nutritional environment.


2015 ◽  
Vol 53 (3) ◽  
pp. 1009-1011 ◽  
Author(s):  
Timothy J. J. Inglis ◽  
Dorothee R. Hahne ◽  
Adam J. Merritt ◽  
Michael W. Clarke

Solid-phase microextraction gas chromatography-mass spectrometry (SPME-GCMS) was used to show that dimethyl sulfide produced byBurkholderia pseudomalleiis responsible for its unusual truffle-like smell and distinguishes the species fromBurkholderia thailandensis. SPME-GCMS can be safely used to detect dimethyl sulfide produced by agar-grownB. pseudomallei.


2018 ◽  
Vol 200 (14) ◽  
Author(s):  
Jennifer R. Klaus ◽  
Jacqueline Deay ◽  
Benjamin Neuenswander ◽  
Wyatt Hursh ◽  
Zhe Gao ◽  
...  

ABSTRACT Burkholderia pseudomallei , the causative agent of melioidosis, encodes almost a dozen predicted polyketide (PK) biosynthetic gene clusters. Many of these are regulated by LuxR-I-type acyl-homoserine (AHL) quorum-sensing systems. One of the PK gene clusters, the mal gene cluster, is conserved in the close relative Burkholderia thailandensis . The B. thailandensis mal genes code for the cytotoxin malleilactone and are regulated by a genetically linked LuxR-type transcription factor, MalR. Although AHLs typically interact with LuxR-type proteins to modulate gene transcription, the B. thailandensis MalR does not appear to be an AHL receptor. Here, we characterize the mal genes and MalR in B. pseudomallei . We use chemical analyses to demonstrate that the B. pseudomallei mal genes code for malleilactone. Our results show that MalR and the mal genes contribute to the ability of B. pseudomallei to kill Caenorhabditis elegans . In B. thailandensis , antibiotics like trimethoprim can activate MalR by driving transcription of the mal genes, and we demonstrate that some of the same antibiotics induce expression of B. pseudomallei malR . We also demonstrate that B. pseudomallei MalR does not respond directly to AHLs. Our results suggest that MalR is indirectly repressed by AHLs, possibly through a repressor, ScmR. We further show that malleilactone is a B. pseudomallei virulence factor and provide the foundation for understanding how malleilactone contributes to the pathology of melioidosis infections. IMPORTANCE Many bacterially produced polyketides are cytotoxic to mammalian cells and are potentially important contributors to pathogenesis during infection. We are interested in the polyketide gene clusters present in Burkholderia pseudomallei , which causes the often-fatal human disease melioidosis. Using knowledge gained by studies in the close relative Burkholderia thailandensis , we show that one of the B. pseudomallei polyketide biosynthetic clusters produces a cytotoxic polyketide, malleilactone. Malleilactone contributes to B. pseudomallei virulence in a Caenorhabditis elegans infection model and is regulated by an orphan LuxR family quorum-sensing transcription factor, MalR. Our studies demonstrate that malleilactone biosynthesis or MalR could be new targets for developing therapeutics to treat melioidosis.


2018 ◽  
Vol 200 (24) ◽  
Author(s):  
Mona W. Orr ◽  
Cordelia A. Weiss ◽  
Geoffrey B. Severin ◽  
Husan Turdiev ◽  
Soo-Kyoung Kim ◽  
...  

ABSTRACT Bis-(3′-5′)-cyclic dimeric GMP (c-di-GMP) is a bacterial second messenger that regulates processes, such as biofilm formation and virulence. During degradation, c-di-GMP is first linearized to 5′-phosphoguanylyl-(3′,5′)-guanosine (pGpG) and subsequently hydrolyzed to two GMPs by a previously unknown enzyme, which was recently identified in Pseudomonas aeruginosa as the 3′-to-5′ exoribonuclease oligoribonuclease (Orn). Mutants of orn accumulated pGpG, which inhibited the linearization of c-di-GMP. This product inhibition led to elevated c-di-GMP levels, resulting in increased aggregate and biofilm formation. Thus, the hydrolysis of pGpG is crucial to the maintenance of c-di-GMP homeostasis. How species that utilize c-di-GMP signaling but lack an orn ortholog hydrolyze pGpG remains unknown. Because Orn is an exoribonuclease, we asked whether pGpG hydrolysis can be carried out by genes that encode protein domains found in exoribonucleases. From a screen of these genes from Vibrio cholerae and Bacillus anthracis, we found that only enzymes known to cleave oligoribonucleotides (orn and nrnA) rescued the P. aeruginosa Δorn mutant phenotypes to the wild type. Thus, we tested additional RNases with demonstrated activity against short oligoribonucleotides. These experiments show that only exoribonucleases previously reported to degrade short RNAs (nrnA, nrnB, nrnC, and orn) can also hydrolyze pGpG. A B. subtilis nrnA nrnB mutant had elevated c-di-GMP, suggesting that these two genes serve as the primary enzymes to degrade pGpG. These results indicate that the requirement for pGpG hydrolysis to complete c-di-GMP signaling is conserved across species. The final steps of RNA turnover and c-di-GMP turnover appear to converge at a subset of RNases specific for short oligoribonucleotides. IMPORTANCE The bacterial bis-(3′-5′)-cyclic dimeric GMP (c-di-GMP) signaling molecule regulates complex processes, such as biofilm formation. c-di-GMP is degraded in two-steps, linearization into pGpG and subsequent cleavage to two GMPs. The 3′-to-5′ exonuclease oligoribonuclease (Orn) serves as the enzyme that degrades pGpG in Pseudomonas aeruginosa. Many phyla contain species that utilize c-di-GMP signaling but lack an Orn homolog, and the protein that functions to degrade pGpG remains uncharacterized. Here, systematic screening of genes encoding proteins containing domains found in exoribonucleases revealed a subset of genes encoded within the genomes of Bacillus anthracis and Vibrio cholerae that degrade pGpG to GMP and are functionally analogous to Orn. Feedback inhibition by pGpG is a conserved process, as strains lacking these genes accumulate c-di-GMP.


2014 ◽  
Vol 80 (21) ◽  
pp. 6843-6852 ◽  
Author(s):  
Victoria G. Pederick ◽  
Bart A. Eijkelkamp ◽  
Miranda P. Ween ◽  
Stephanie L. Begg ◽  
James C. Paton ◽  
...  

ABSTRACTIn microaerophilic or anaerobic environments,Pseudomonas aeruginosautilizes nitrate reduction for energy production, a process dependent on the availability of the oxyanionic form of molybdenum, molybdate (MoO42−). Here, we show that molybdate acquisition inP. aeruginosaoccurs via a high-affinity ATP-binding cassette permease (ModABC). ModA is a cluster D-III solute binding protein capable of interacting with molybdate or tungstate oxyanions. Deletion of themodAgene reduces cellular molybdate concentrations and results in inhibition of anaerobic growth and nitrate reduction. Further, we show that conditions that permit nitrate reduction also cause inhibition of biofilm formation and an alteration in fatty acid composition ofP. aeruginosa. Collectively, these data highlight the importance of molybdate for anaerobic growth ofP. aeruginosaand reveal novel consequences of nitrate reduction on biofilm formation and cell membrane composition.


Sign in / Sign up

Export Citation Format

Share Document