scholarly journals Methanotrophic and Methanogenic Communities in Swiss Alpine Fens Dominated by Carex rostrata and Eriophorum angustifolium

2015 ◽  
Vol 81 (17) ◽  
pp. 5832-5844 ◽  
Author(s):  
Simrita Cheema ◽  
Josef Zeyer ◽  
Ruth Henneberger

ABSTRACTVascular plants play a key role in controlling CH4emissions from natural wetlands, because they influence CH4production, oxidation, and transport to the atmosphere. Here we investigated differences in the abundance and composition of methanotrophic and methanogenic communities in three Swiss alpine fens dominated by different vascular plant species under natural conditions. The sampling locations either were situated at geographically distinct sites with different physicochemical properties but the same dominant plant species (Carex rostrata) or were located within the same site, showing comparable physicochemical pore water properties, but had different plant species (C. rostrataorEriophorum angustifolium). All three locations were permanently submerged and showed high levels of CH4emissions (80.3 to 184.4 mg CH4m−2day−1). Soil samples were collected from three different depths with different pore water CH4and O2concentrations and were analyzed forpmoAandmcrAgene and transcript abundance and community composition, as well as soil structure. The dominant plant species appeared to have a significant influence on the composition of the active methanotrophic communities (transcript level), while the methanogenic communities differed significantly only at the gene level. Yet no plant species-specific microbial taxa were discerned. Moreover, for all communities, differences in composition were more pronounced with the site (i.e., with different physicochemical properties) than with the plant species. Moreover, depth significantly influenced the composition of the active methanotrophic communities. Differences in abundance were generally low, and active methanotrophs and methanogens coexisted at all three locations and depths independently of CH4and O2concentrations or plant species.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Shourav Dutta ◽  
Trapa Biswas ◽  
Md. Akhter Hossain ◽  
Md. Rayhanur Rahman ◽  
Saddam Hossen ◽  
...  

Purpose This study/paper aims to evaluate the floral richness of the central part of Chattogram city, Bangladesh. Chattogram is recognized as the largest port city and the commercial capital of Bangladesh, which confronts faster urbanization and swift infrastructure development. Green spaces in and around Chattogram city are shrinking sharply, which resulted in rapid loss of floral and faunal resources in this area. The present study was carried out from February 2018 to January 2019 to enumerate the vascular plant species of the Sulakbahar ward located in the central part of Chattogram City, Bangladesh. Design/methodology/approach The study area was categorized into 10 habitats to assess the variation of floral composition. The extensive whole area survey method was applied to record the flora from all sorts of plant habitats of the research area. Findings The study enumerated 418 vascular plant species under 315 genera and 120 families including natural, planted and cultivated from the study area. The habit form of the recorded plant composition indicated that herbs (35%) constitute the major plant category followed by trees (34%), shrubs (17%), climbers (12%), ferns (1%) and orchids (1%). The study also indicated that exotic species (50.3%) became dominant than native species (49.7%) in Chattogram city because of their scenic beauty, easy propagation and ornamental value to the city planners and inhabitants. Originality/value It appeared that floral resources of the Chattogram city area are in great threat due to aggressive and unplanned infrastructure development for housing, offices and institutions by replacing the green spaces. The study recommended that urgent protection measures should be taken to conserve and protect the existing floral resources for the well-being of the urban people.


2017 ◽  
Vol 28 (1-2) ◽  
pp. 28-35 ◽  
Author(s):  
B. A. Baranovski

Nowadays, bioecological characteristics of species are the basis for flora and vegetation studying on the different levels. Bioecological characteristics of species is required in process of flora studying on the different levels such as biotopes or phytocenoses, floras of particular areas (floras of ecologically homogeneous habitats), and floras of certain territories. Ramensky scale is the one of first detailed ecological scales on plant species ordination in relation to various environmental factors; it developed in 1938 (Ramensky, 1971). A little later (1941), Pogrebnyak’s scale of forest stands was proposed. Ellenberg’s system developed in 1950 (Ellenberg, 1979) and Tsyganov’s system (Tsyganov, 1975) are best known as the systems of ecological scales on vascular plant species; these systems represent of habitat detection by ecotopic ecomorphs of plant species (phytoindication). Basically, the system proposed by Alexander Lyutsianovich Belgard was the one of first system of plant species that identiified ectomorphs in relation to environmental factors. As early as 1950, Belgard developed the tabulated system of ecomorphs using the Latin ecomorphs abbreviation; he also used the terminology proposed in the late 19th century by Dekandol (1956) and Warming (1903), as well as terminology of other authors. The article analyzes the features of Belgard’s system of ecomorphs on vascular plants. It has certain significance and advantages over other systems of ecomorphs. The use of abbreviated Latin names of ecomorphs in tabular form enables the use shortened form of ones. In the working scheme of Belgard’s system of ecomorphs relation of species to environmental factors are represented in the abbreviated Latin alphabetic version (Belgard, 1950). Combined into table, the ecomorphic analysis of plant species within association (ecological certification of species), biotope or area site (water area) gives an explicit pattern on ecological structure of flora within surveyed community, biotope or landscape, and on environmental conditions. Development and application by Belgrard the cenomorphs as «species’ adaptation to phytocenosis as a whole» were completely new in the development of systems of ecomorphs and, in this connection, different coenomorphs were distinguished. Like any concept, the system of ecomorphs by Belgard has the possibility and necessity to be developed and added. Long-time researches and analysis of literature sources allow to propose a new coenomorph in the context of Belgard’s system of ecomorphs development: silvomargoant (species of forest margin, from the Latin words margo – edge, boundary (Dvoretsky, 1976), margo – margin, ad margins silvarum – along the deciduous forest margins). As an example of ecomorphic characterization of species according to the system of ecomorphs by Belgard (when the abbreviated Latin ecomorph names are used in tabular form and the proposed cenomorph is used), it was given the part of the table on vascular plants ecomorphs in the National Nature Park «Orelsky» (Baranovsky et al). The Belgard’s system of ecomorphs is particularly convenient and can be successfully applied to data processing in the ecological analysis of the flora on wide areas with significant species richness, and the proposed ecomorph will be another necessary element in the Belgard’s system of ecomorphs. 


2020 ◽  
Vol 26 (11) ◽  
pp. 1138-1144 ◽  
Author(s):  
Mohammad A. Ansari ◽  
Khan F. Badrealam ◽  
Asrar Alam ◽  
Saba Tufail ◽  
Gulshan Khalique ◽  
...  

: In the recent scenario, nanotechnology-based therapeutics intervention has gained tremendous impetus all across the globe. Nano-based pharmacological intervention of various bioactive compounds has been explored on an increasing scale. Sesquiterpenes are major constituents of essential oils (EOs) present in various plant species which possess intriguing therapeutic potentials. However, owing to their poor physicochemical properties; they have pharmacological limitations. Recent advances in nano-based therapeutic interventions offer various avenues to improve their therapeutic applicability. Reckoning with these, the present review collates various nano-based therapeutic intervention of sesquiterpenes with prospective potential against various debilitating diseases especially cancer. In our viewpoint, considering the burgeoning advancement in the field of nanomedicine; in the near future, the clinical applicability of these nano-formulated sesquiterpenes can be foreseen with great enthusiasm.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Markéta Mejdová ◽  
Jiří Dušek ◽  
Lenka Foltýnová ◽  
Lenka Macálková ◽  
Hana Čížková

AbstractThe study estimates the parameters of the photosynthesis–irradiance relationship (PN/I) of a sedge-grass marsh (Czech Republic, Europe), represented as an active “green” surface—a hypothetical “big-leaf”. Photosynthetic parameters of the “big-leaf” are based on in situ measurements of the leaf PN/I curves of the dominant plant species. The non-rectangular hyperbola was selected as the best model for fitting the PN/I relationships. The plant species had different parameters of this relationship. The highest light-saturated rate of photosynthesis (Asat) was recorded for Glyceria maxima and Acorus calamus followed by Carex acuta and Phalaris arundinacea. The lowest Asat was recorded for Calamagrostis canescens. The parameters of the PN/I relationship were calculated also for different growth periods. The highest Asat was calculated for the spring period followed by the summer and autumn periods. The effect of the species composition of the local plant community on the photosynthetic parameters of the “big-leaf” was addressed by introducing both real (recorded) and hypothetical species compositions corresponding to “wet” and “dry” hydrological conditions. We can conclude that the species composition (or diversity) is essential for reaching a high Asat of the “big-leaf ”representing the sedge-grass marsh in different growth periods.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Yamina Micaela Rosas ◽  
Pablo L. Peri ◽  
María Vanessa Lencinas ◽  
Romina Lasagno ◽  
Guillermo J. Martínez Pastur

Abstract Background Biodiversity supports multiple ecosystem services, whereas species loss endangers the provision of many services and affects ecosystem resilience and resistance capacity. The increase of remote sensing techniques allows to estimate biodiversity and ecosystem services supply at the landscape level in areas with low available data (e.g. Southern Patagonia). This paper evaluates the potential biodiversity and how it links with ecosystem services, based on vascular plant species across eight ecological areas. We also evaluated the habitat plant requirements and their relation with natural gradients. A total of 977 plots were used to develop habitat suitability maps based on an environmental niche factor analysis of 15 more important indicator species for each ecological area (n = 53 species) using 40 explanatory variables. Finally, these maps were combined into a single potential biodiversity map, which was linked with environmental variables and ecosystem services supply. For comparisons, data were extracted and compared through analyses of variance. Results The plant habitat requirements varied greatly among the different ecological areas, and it was possible to define groups according to its specialization and marginality indexes. The potential biodiversity map allowed us to detect coldspots in the western mountains and hotspots in southern and eastern areas. Higher biodiversity was associated to higher temperatures and normalized difference vegetation index, while lower biodiversity was related to elevation and rainfall. Potential biodiversity was closely associated with supporting and provisioning ecosystem services in shrublands and grasslands in the humid steppe, while the lowest values were related to cultural ecosystem services in Nothofagus forests. Conclusions The present study showed that plant species present remarkable differences in spatial distributions and ecological requirements, being a useful proxy for potential biodiversity modelling. Potential biodiversity values change across ecological areas allowing to identify hotspots and coldspots, a useful tool for landscape management and conservation strategies. In addition, links with ecosystem services detect potential synergies and trade-offs, where areas with the lowest potential biodiversity are related to cultural ecosystem services (e.g. aesthetic values) and areas with the greatest potential biodiversity showed threats related to productive activities (e.g. livestock).


Sign in / Sign up

Export Citation Format

Share Document