scholarly journals Diverse Cadmium Resistance Determinants in Listeria monocytogenes Isolates from the Turkey Processing Plant Environment

2009 ◽  
Vol 76 (2) ◽  
pp. 627-630 ◽  
Author(s):  
S. Mullapudi ◽  
R. M. Siletzky ◽  
S. Kathariou

ABSTRACT Two different cadA cadmium resistance determinants (cadA1, first identified in Tn5422, and cadA2, associated with pLM80) were detected among cadmium-resistant Listeria monocytogenes strains from turkey processing plants. Prevalence of cadA1 versus cadA2 was serotype associated. Cadmium-resistant isolates that were also resistant to benzalkonium chloride (BC) were more likely to harbor cadA2 alone or together with cadA1 than isolates that were cadmium resistant but BC susceptible.

2009 ◽  
Vol 75 (8) ◽  
pp. 2433-2438 ◽  
Author(s):  
Jae-Won Kim ◽  
Sophia Kathariou

ABSTRACT Listeria monocytogenes epidemic clone II (ECII) has been responsible for two multistate outbreaks in the United States in 1998-1999 and in 2002, in which contaminated ready-to-eat meat products (hot dogs and turkey deli meats, respectively) were implicated. However, ecological adaptations of ECII strains in the food-processing plant environment remain unidentified. In this study, we found that broad-host-range phages, including phages isolated from the processing plant environment, produced plaques on ECII strains grown at 37°C but not when the bacteria were grown at lower temperatures (30°C or below). ECII strains grown at lower temperatures were resistant to phage regardless of the temperature during infection and subsequent incubation. In contrast, the phage susceptibility of all other tested strains of serotype 4b (including epidemic clone I) and of strains of other serotypes and Listeria species was independent of the growth temperature of the bacteria. This temperature-dependent phage susceptibility of ECII bacteria was consistently observed with all surveyed ECII strains from outbreaks or from processing plants, regardless of the presence or absence of cadmium resistance plasmids. Phages adsorbed similarly on ECII bacteria grown at 25°C and at 37°C, suggesting that resistance of ECII strains grown at 25°C was not due to failure of the phage to adsorb. Even though the underlying mechanisms remain to be elucidated, temperature-dependent phage resistance may represent an important ecological adaptation of L. monocytogenes ECII in processed, cold-stored foods and in the processing plant environment, where relatively low temperatures prevail.


2012 ◽  
Vol 78 (19) ◽  
pp. 6938-6945 ◽  
Author(s):  
Shakir S. Ratani ◽  
Robin M. Siletzky ◽  
Vikrant Dutta ◽  
Suleyman Yildirim ◽  
Jason A. Osborne ◽  
...  

ABSTRACTThe persistence ofListeria monocytogenesin food processing plants and other ecosystems reflects its ability to adapt to numerous stresses. In this study, we investigated 138 isolates from foods and food processing plants for resistance to the quaternary ammonium disinfectant benzalkonium chloride (BC) and to heavy metals (cadmium and arsenic). We also determined the prevalence of distinct cadmium resistance determinants (cadA1,cadA2, andcadA3) among cadmium-resistant isolates. Most BC-resistant isolates were resistant to cadmium as well. Arsenic resistance was encountered primarily in serotype 4b and was an attribute of most isolates of the serotype 4b epidemic clonal group ECIa. Prevalence of the known cadmium resistance determinants was serotype associated:cadA1was more common in isolates of serotypes 1/2a and 1/2b than 4b, whilecadA2was more common in those of serotype 4b. A subset (15/77 [19%]) of the cadmium-resistant isolates lacked the known cadmium resistance determinants. Most of these isolates were of serotype 4b and were also resistant to arsenic, suggesting novel determinants that may confer resistance to both cadmium and arsenic in these serotype 4b strains. The findings may reflect previously unrecognized components of the ecological history of different serotypes and clonal groups ofL. monocytogenes, including exposures to heavy metals and disinfectants.


2012 ◽  
Vol 78 (21) ◽  
pp. 7549-7556 ◽  
Author(s):  
S. Katharios-Lanwermeyer ◽  
M. Rakic-Martinez ◽  
D. Elhanafi ◽  
S. Ratani ◽  
J. M. Tiedje ◽  
...  

ABSTRACTResistance to the quaternary ammonium disinfectant benzalkonium chloride (BC) may be an important contributor to the ability ofListeriaspp. to persist in the processing plant environment. Although a plasmid-borne disinfectant resistance cassette (bcrABC) has been identified inListeria monocytogenes, horizontal transfer of these genes has not been characterized. NonpathogenicListeriaspp. such asL. innocuaandL. welshimeriare more common thanL. monocytogenesin food processing environments and may contribute to the dissemination of disinfectant resistance genes in listeriae, includingL. monocytogenes. In this study, we investigated conjugative transfer of resistance to BC and to cadmium from nonpathogenicListeriaspp. to other nonpathogenic listeriae, as well as toL. monocytogenes. BC-resistantL. welshimeriandL. innocuaharboringbcrABC, along with the cadmium resistance determinantcadA2, were able to transfer resistance to other nonpathogenic listeriae as well as toL. monocytogenesof diverse serotypes, including strains from the 2011 cantaloupe outbreak. Transfer among nonpathogenicListeriaspp. was noticeably higher at 25°C than at 37°C, whereas acquisition of resistance byL. monocytogeneswas equally efficient at 25 and 37°C. When the nonpathogenic donors were resistant to both BC and cadmium, acquisition of cadmium resistance was an effective surrogate for transfer of resistance to BC, suggesting coselection between these resistance attributes. The results suggest that nonpathogenicListeriaspp. may behave as reservoirs for disinfectant and heavy metal resistance genes for other listeriae, including the pathogenic speciesL. monocytogenes.


2021 ◽  
Vol 11 ◽  
Author(s):  
Tereza Gelbicova ◽  
Martina Florianova ◽  
Lucie Hluchanova ◽  
Alžběta Kalova ◽  
Kristýna Korena ◽  
...  

Environmental adaptation of Listeria monocytogenes is a complex process involving various mechanisms that can contribute to their survival in the environment, further spreading throughout the food chain and the development of listeriosis. The aim of this study was to analyze whole-genome sequencing data in a set of 270 strains of L. monocytogenes derived from human listeriosis cases and food and environmental sources in order to compare the prevalence and type of genetic determinants encoding cadmium, arsenic, and benzalkonium chloride resistance. Most of the detected genes of cadmium (27.8%), arsenic (15.6%), and benzalkonium chloride (7.0%) resistance were located on mobile genetic elements, even in phylogenetically distant lineages I and II, which indicates the possibility of their horizontal spread. Although no differences were found in the prevalence of these genes between human and food strains, they have been detected sporadically in strains from the environment. Regarding cadmium resistance genes, cadA1C1_Tn5422 predominated, especially in clonal complexes (CCs) 121, 8, and 3 strains. At the same time, qacH_Tn6188-encoding benzalkonium chloride resistance was most frequently detected in the genome of CC121 strains. Genes encoding arsenic resistance were detected mainly in strains CC2 (located on the chromosomal island LGI2) and CC9 (carried on Tn554). The results indicated a relationship between the spread of genes encoding resistance to cadmium, arsenic, and benzalkonium chloride in certain serotypes and CCs and showed the need for a more extensive study of L. monocytogenes strains to better understand their ability to adapt to the food production environment.


2001 ◽  
Vol 64 (7) ◽  
pp. 994-999 ◽  
Author(s):  
MARIA K. MIETTINEN ◽  
LIISA PALMU ◽  
K. JOHANNA BJÖRKROTH ◽  
HANNU KORKEALA

The environment and products from two broiler abattoirs and processing plants and raw broiler pieces at the retail level were sampled for Listeria monocytogenes in order to evaluate the contamination level of the broiler carcasses and products. Sampling started in the slaughtering process and finished with raw broiler meat or ready-to-eat cooked product. Sampling sites positive for L. monocytogenes at the broiler abattoir were the air chiller, the skin-removing machine, and the conveyor belt leading to the packaging area. The L. monocytogenes contamination rate varied from 1 to 19% between the two plants studied. Furthermore, 62% (38 of 61) of the raw broiler pieces, bought from retail stores, were positive for L. monocytogenes. Altogether, 136 L. monocytogenes isolates were obtained for serotyping and pulsed-field gel electrophoresis(PFGE) characterization performed with two rare-cutting enzymes (ApaI and AscI). Altogether three serotypes (1/2a, 1/2c, and 4b) and 14 different PFGE types were obtained using information provided from both ApaI and AscI patterns for discrimination basis. The two broiler abattoirs studied did not share the same PFGE types. However, the same PFGE types found in the raw broiler pieces at the retail level were also found in the broiler abattoirs where the broilers had been slaughtered.


1996 ◽  
Vol 59 (8) ◽  
pp. 827-831 ◽  
Author(s):  
ISABEL C. BLACKMAN ◽  
JOSEPH F. FRANK

The objective of this research was to determine the ability of Listeria monocytogenes to grow as a biofilm on various food-processing surfaces including stainless steel, Teflon®, nylon, and polyester floor sealant. Each of these surfaces was able to support biofilm formation when incubation was at 21°C in Trypticase soy broth (TSB). Biofilm formation was greatest on polyester floor sealant (40% of surface area covered after 7 days of incubation) and least on nylon (3% coverage). The use of chemically defined minimal medium resulted in a lack of biofilm formation on polyester floor sealant, and reduced biofilm levels on stainless steel. Biofilm formation was reduced with incubation at 10°C, but Teflon® and stainless steel still allowed 23 to 24% coverage after incubation in TSB for 18 days. Biofilm growth of L. monocytogenes was sufficient to provide a substantial risk of this pathogen contaminating the food-processing plant environment if wet surfaces are not maintained in a sanitary condition.


2006 ◽  
Vol 69 (4) ◽  
pp. 815-819 ◽  
Author(s):  
CHUNG-HSI CHOU ◽  
JUAN L. SILVA ◽  
CHINLING WANG

Raw channel catfish fillets collected from three processing plants during four time periods were tested for the presence of Listeria species. Listeria monocytogenes was the predominant Listeria species found in these catfish fillets, with 25 to 47% prevalence. Other Listeria species, such as L. welshimeri, L. innocua, L. ivanovii, L. grayi, and L. seeligeri, were also found. L. monocytogenes isolates were further fingerprinted by a repetitive element PCR. Forty distinctive electrophoretic types (ETs) and three genetic clusters were determined by Dice coefficient analysis and UPGMA (unweighted pair group method using arithmetic averages). Twenty of 40 ETs were represented by a single isolate, and the other 20 ETs were represented by 2 to 11 isolates. Thirty-five ETs, represented by 76 isolates, were found in processing plant A, B, or C and designated plant-specific types. The remaining five ETs, represented by 21 isolates, were found in multiple plants and designated nonplant-specific types. In addition, 10 ETs from 52 isolates were found repeatedly during different seasons. Plant-specific and nonplant-specific L. monocytogenes coexisted in processed catfish fillets. Some isolates were persistently found in processed fillets, suggesting that either the current sanitation procedures used by these plants are inadequate or that these isolates originated from the natural habitats of the catfish. The results also suggest that the repetitive element PCR is a useful tool for differentiating L. monocytogenes subtypes and can be used for tracing the source of a contamination.


2004 ◽  
Vol 67 (2) ◽  
pp. 328-341 ◽  
Author(s):  
JOANNE THIMOTHE ◽  
KENDRA KERR NIGHTINGALE ◽  
KEN GALL ◽  
VIRGINIA N. SCOTT ◽  
MARTIN WIEDMANN

Four smoked fish processing plants were used as a model system to characterize Listeria monocytogenes contamination patterns in ready-to-eat food production environments. Each of the four plants was sampled monthly for approximately 1 year. At each sampling, four to six raw fish and four to six finished product samples were collected from corresponding lots. In addition, 12 to 14 environmental sponge samples were collected several hours after the start of production at sites selected as being likely contamination sources. A total of 234 raw fish, 233 finished products, and 553 environmental samples were tested. Presumptive Listeria spp. were isolated from 16.7% of the raw fish samples, 9.0% of the finished product samples, and 27.3% of the environmental samples. L. monocytogenes was isolated from 3.8% of the raw fish samples (0 to 10%, depending on the plant), 1.3% of the finished product samples (0 to 3.3%), and 12.8% of the environmental samples (0 to 29.8%). Among the environmental samples, L. monocytogenes was found in 23.7% of the samples taken from drains, 4.8% of the samples taken from food contact surfaces, 10.4% of the samples taken from employee contact surfaces (aprons, hands, and door handles), and 12.3% of the samples taken from other nonfood contact surfaces. Listeria spp. were isolated from environmental samples in each of the four plants, whereas L. monocytogenes was not found in any of the environmental samples from one plant. Overall, the L. monocytogenes prevalence in the plant environment showed a statistically significant (P < 0.0001) positive relationship with the prevalence of this organism in finished product samples. Automated EcoRI ribotyping differentiated 15 ribotypes among the 83 L. monocytogenes isolates. For each of the three plants with L. monocytogenes–positive environmental samples, one or two ribotypes seemed to persist in the plant environment during the study period. In one plant, a specific L. monocytogenes ribotype represented 44% of the L. monocytogenes–positive environmental samples and was also responsible for one of the two finished product positives found in this plant. In another plant, a specific L. monocytogenes ribotype persisted in the raw fish handling area. However, this ribotype was never isolated from the finished product area in this plant, indicating that this operation has achieved effective separation of raw and finished product areas. Molecular subtyping methods can help identify plant-specific L. monocytogenes contamination routes and thus provide the knowledge needed to implement improved L. monocytogenes control strategies.


2010 ◽  
Vol 73 (2) ◽  
pp. 286-291 ◽  
Author(s):  
MARK E. BERRANG ◽  
RICHARD J. MEINERSMANN ◽  
JOSEPH F. FRANK ◽  
SCOTT R. LADELY

This study was undertaken to determine potential sources of Listeria monocytogenes in a newly constructed chicken further processing plant and document the eventual colonization of the facility by this pathogen. To ascertain the colonization status of the plant, floor drains were sampled after a production shift and again after a cleanup shift on roughly a monthly basis for 21 months. Potential sources of L. monocytogenes to the plant included incoming raw meat, incoming fresh air, and personnel. Nearby environment and community samples were also examined. All L. monocytogenes detected were subjected to DNA sequence–based subtyping. L. monocytogenes was not detected in the plant before the commencement of processing operations. Within 4 months, several subtypes of L. monocytogenes were detected in floor drains, both before and after cleaning and sanitizing operations. No L. monocytogenes was detected on filters for incoming air, samples associated with plant employees, or a nearby discount shopping center. One subtype of L. monocytogenes was detected in a natural stream near the plant; however, this subtype was never detected inside the plant. Eight subtypes of L. monocytogenes were detected in raw meat staged for further processing; one of the raw meat subtypes was indistinguishable from a persistent drain subtype recovered after cleaning on eight occasions in four different drains. Poultry further processing plants are likely to become colonized with L. monocytogenes; raw product is an important source of the organism to the plant.


Sign in / Sign up

Export Citation Format

Share Document