scholarly journals Characterization of Xylan Utilization and Discovery of a New Endoxylanase in Thermoanaerobacterium saccharolyticum through Targeted Gene Deletions

2012 ◽  
Vol 78 (23) ◽  
pp. 8441-8447 ◽  
Author(s):  
Kara K. Podkaminer ◽  
Adam M. Guss ◽  
Heather L. Trajano ◽  
David A. Hogsett ◽  
Lee R. Lynd

ABSTRACTThe economical production of fuels and commodity chemicals from lignocellulose requires the utilization of both the cellulose and hemicellulose fractions. Xylanase enzymes allow greater utilization of hemicellulose while also increasing cellulose hydrolysis. Recent metabolic engineering efforts have resulted in a strain ofThermoanaerobacterium saccharolyticumthat can convert C5and C6sugars, as well as insoluble xylan, into ethanol at high yield. To better understand the process of xylan solubilization in this organism, a series of targeted deletions were constructed in the homoethanologenicT. saccharolyticumstrain M0355 to characterize xylan hydrolysis and xylose utilization in this organism. While the deletion of β-xylosidasexylDslowed the growth ofT. saccharolyticumon birchwood xylan and led to an accumulation of short-chain xylo-oligomers, no other single deletion, including the deletion of the previously characterized endoxylanase XynA, had a phenotype distinct from that of the wild type. This result indicates a multiplicity of xylanase enzymes which facilitate xylan degradation inT. saccharolyticum. Growth on xylan was prevented only when a previously uncharacterized endoxylanase encoded byxynCwas also deleted in conjunction withxynA. Sequence analysis ofxynCindicates that this enzyme, a low-molecular-weight endoxylanase with homology to glycoside hydrolase family 11 enzymes, is secreted yet untethered to the cell wall. Together, these observations expand our understanding of the enzymatic basis of xylan hydrolysis byT. saccharolyticum.

2010 ◽  
Vol 9 (11) ◽  
pp. 1650-1660 ◽  
Author(s):  
Encarnación Dueñas-Santero ◽  
Ana Belén Martín-Cuadrado ◽  
Thierry Fontaine ◽  
Jean-Paul Latgé ◽  
Francisco del Rey ◽  
...  

ABSTRACT In yeast, enzymes with β-glucanase activity are thought to be necessary in morphogenetic events that require controlled hydrolysis of the cell wall. Comparison of the sequence of the Saccharomyces cerevisiae exo-β(1,3)-glucanase Exg1 with the Schizosaccharomyces pombe genome allowed the identification of three genes that were named exg1 + (locus SPBC1105.05), exg2 + (SPAC12B10.11), and exg3 + (SPBC2D10.05). The three proteins have different localizations: Exg1 is secreted to the periplasmic space, Exg2 is a membrane protein, and Exg3 is a cytoplasmic protein. Characterization of the biochemical activity of the proteins indicated that Exg1 and Exg3 are active only against β(1,6)-glucans while no activity was detected for Exg2. Interestingly, Exg1 cleaves the glucans with an endohydrolytic mode of action. exg1 + showed periodic expression during the cell cycle, with a maximum coinciding with the septation process, and its expression was dependent on the transcription factor Sep1. The Exg1 protein localizes to the septum region in a pattern that was different from that of the endo-β(1,3)-glucanase Eng1. Overexpression of Exg2 resulted in an increase in cell wall material at the poles and in the septum, but the putative catalytic activity of the protein was not required for this effect.


2012 ◽  
Vol 78 (17) ◽  
pp. 6161-6171 ◽  
Author(s):  
Christoph Sygmund ◽  
Daniel Kracher ◽  
Stefan Scheiblbrandner ◽  
Kawah Zahma ◽  
Alfons K. G. Felice ◽  
...  

ABSTRACTThe genome ofNeurospora crassaencodes two different cellobiose dehydrogenases (CDHs) with a sequence identity of only 53%. So far, only CDH IIA, which is induced during growth on cellulose and features a C-terminal carbohydrate binding module (CBM), was detected in the secretome ofN. crassaand preliminarily characterized. CDH IIB is not significantly upregulated during growth on cellulosic material and lacks a CBM. Since CDH IIB could not be identified in the secretome, both CDHs were recombinantly produced inPichia pastoris. With the cytochrome domain-dependent one-electron acceptor cytochromec, CDH IIA has a narrower and more acidic pH optimum than CDH IIB. Interestingly, the catalytic efficiencies of both CDHs for carbohydrates are rather similar, but CDH IIA exhibits 4- to 5-times-higher apparent catalytic constants (kcatandKmvalues) than CDH IIB for most tested carbohydrates. A third major difference is the 65-mV-lower redox potential of the hemebcofactor in the cytochrome domain of CDH IIA than CDH IIB. To study the interaction with a member of the glycoside hydrolase 61 family, the copper-dependent polysaccharide monooxygenase GH61-3 (NCU02916) fromN. crassawas expressed inP. pastoris. A pH-dependent electron transfer from both CDHs via their cytochrome domains to GH61-3 was observed. The different properties of CDH IIA and CDH IIB and their effect on interactions with GH61-3 are discussed in regard to the proposedin vivofunction of the CDH/GH61 enzyme system in oxidative cellulose hydrolysis.


1971 ◽  
Vol 34 (3) ◽  
pp. 301-309 ◽  
Author(s):  
Wolff M. Kirsch ◽  
Demoy Schulz ◽  
Paul Nakane ◽  
Robert Lasher ◽  
Tadami Yamamoto

✓ Intact lyophilized nuclei and chromosomes were obtained from glioblastomas or brain, either in situ or in culture, by freezing at −156°C, drying at −25°C, and mechanical disassociation in glycerol at 2°C. Nuclear or chromosomal isolation was accomplished in hygroscopic nonaqueous media of high density. The method gave homogeneous nuclear and chromosomal preparations in high yield with preservation of labile, water-soluble constituents and residual biosynthetic activity. Unique opportunities for quantitative cytochemical studies at the level of the subcellular organelle are made available by the method.


2014 ◽  
Vol 80 (16) ◽  
pp. 5001-5011 ◽  
Author(s):  
D. H. Currie ◽  
A. M. Guss ◽  
C. D. Herring ◽  
R. J. Giannone ◽  
C. M. Johnson ◽  
...  

ABSTRACTThermoanaerobacterium saccharolyticum, a Gram-positive thermophilic anaerobic bacterium, grows robustly on insoluble hemicellulose, which requires a specialized suite of secreted and transmembrane proteins. We report here the characterization of proteins secreted by this organism. Cultures were grown on hemicellulose, glucose, xylose, starch, and xylan in pH-controlled bioreactors, and samples were analyzed via spotted microarrays and liquid chromatography-mass spectrometry. Key hydrolases and transporters employed byT. saccharolyticumfor growth on hemicellulose were, for the most part, hitherto uncharacterized and existed in two clusters (Tsac_1445throughTsac_1464for xylan/xylose andTsac_1344throughTsac_1349for starch). A phosphotransferase system subunit, Tsac_0032, also appeared to be exclusive to growth on glucose. Previously identified hydrolases that showed strong conditional expression changes included XynA (Tsac_1459), XynC (Tsac_0897), and a pullulanase, Apu (Tsac_1342). An omnipresent transcript and protein making up a large percentage of the overall secretome, Tsac_0361, was tentatively identified as the primary S-layer component inT. saccharolyticum, and deletion of theTsac_0361gene resulted in gross morphological changes to the cells. The view of hemicellulose degradation revealed here will be enabling for metabolic engineering efforts in biofuel-producing organisms that degrade cellulose well but lack the ability to catabolize C5sugars.


2013 ◽  
Vol 79 (19) ◽  
pp. 5788-5798 ◽  
Author(s):  
Chang-Hao Cui ◽  
Qing-Mei Liu ◽  
Jin-Kwang Kim ◽  
Bong-Hyun Sung ◽  
Song-Gun Kim ◽  
...  

ABSTRACTHere, we isolated and characterized a new ginsenoside-transforming β-glucosidase (BglQM) fromMucilaginibactersp. strain QM49 that shows biotransformation activity for various major ginsenosides. The gene responsible for this activity,bglQM, consists of 2,346 bp and is predicted to encode 781 amino acid residues. This enzyme has a molecular mass of 85.6 kDa. Sequence analysis of BglQM revealed that it could be classified into glycoside hydrolase family 3. The enzyme was overexpressed inEscherichia coliBL21(DE3) using a maltose binding protein (MBP)-fused pMAL-c2x vector system containing the tobacco etch virus (TEV) proteolytic cleavage site. Overexpressed recombinant BglQM could efficiently transform the protopanaxatriol-type ginsenosides Re and Rg1into (S)-Rg2and (S)-Rh1, respectively, by hydrolyzing one glucose moiety attached to the C-20 position at pH 8.0 and 30°C. TheKmvalues forp-nitrophenyl-β-d-glucopyranoside, Re, and Rg1were 37.0 ± 0.4 μM and 3.22 ± 0.15 and 1.48 ± 0.09 mM, respectively, and theVmaxvalues were 33.4 ± 0.6 μmol min−1mg−1of protein and 19.2 ± 0.2 and 28.8 ± 0.27 nmol min−1mg−1of protein, respectively. A crude protopanaxatriol-type ginsenoside mixture (PPTGM) was treated with BglQM, followed by silica column purification, to produce (S)-Rh1and (S)-Rg2at chromatographic purities of 98% ± 0.5% and 97% ± 1.2%, respectively. This is the first report of gram-scale production of (S)-Rh1and (S)-Rg2from PPTGM using a novel ginsenoside-transforming β-glucosidase of glycoside hydrolase family 3.


2012 ◽  
Vol 79 (2) ◽  
pp. 488-496 ◽  
Author(s):  
Mathieu Bey ◽  
Simeng Zhou ◽  
Laetitia Poidevin ◽  
Bernard Henrissat ◽  
Pedro M. Coutinho ◽  
...  

ABSTRACTThe genome of the coprophilic ascomycetePodospora anserinaencodes 33 different genes encoding copper-dependent lytic polysaccharide monooxygenases (LPMOs) from glycoside hydrolase family 61 (GH61). In this study, two of these enzymes (P. anserinaGH61A [PaGH61A] andPaGH61B), which both harbored a family 1 carbohydrate binding module, were successfully produced inPichia pastoris. Synergistic cooperation betweenPaGH61A orPaGH61B with the cellobiose dehydrogenase (CDH) ofPycnoporus cinnabarinuson cellulose resulted in the formation of oxidized and nonoxidized cello-oligosaccharides. A striking difference betweenPaGH61A andPaGH61B was observed through the identification of the products, among which were doubly and triply oxidized cellodextrins, which were released only by the combination ofPaGH61B with CDH. The mass spectrometry fragmentation patterns of these oxidized products could be consistent with oxidation at the C-6 position with a geminal diol group. The different properties ofPaGH61A andPaGH61B and their effect on the interaction with CDH are discussed in regard to the proposedin vivofunction of the CDH/GH61 enzyme system in oxidative cellulose hydrolysis.


2017 ◽  
Vol 83 (16) ◽  
Author(s):  
Jie Zhou ◽  
Zhoukun Li ◽  
Jiale Wu ◽  
Lifeng Li ◽  
Ding Li ◽  
...  

ABSTRACT A novel β-(1,3)-glucanase gene designated lamC, cloned from Corallococcus sp. strain EGB, contains a fascin-like module and a glycoside hydrolase family 16 (GH16) catalytic module. LamC displays broad hydrolytic activity toward various polysaccharides. Analysis of the hydrolytic products revealed that LamC is an exo-acting enzyme on β-(1,3)(1,3)- and β-(1,6)-linked glucan substrates and an endo-acting enzyme on β-(1,4)-linked glucan and xylan substrates. Site-directed mutagenesis of conserved catalytic Glu residues (E304A and E309A) demonstrated that these activities were derived from the same active site. Excision of the fascin-like module resulted in decreased activity toward β-(1,3)(1,3)-linked glucans. The carbohydrate-binding assay showed that the fascin-like module was a novel β-(1,3)-linked glucan-binding module. The functional characterization of the fascin-like module and catalytic module will help us better understand these enzymes and modules. IMPORTANCE In this report of a bacterial β-(1,3)(1,3)-glucanase containing a fascin-like module, we reveal the β-(1,3)(1,3)-glucan-binding function of the fascin-like module present in the N terminus of LamC. LamC displays exo-β-(1,3)/(1,6)-glucanase and endo-β-(1,4)-glucanase/xylanase activities with a single catalytic domain. Thus, LamC was identified as a novel member of the GH16 family.


2018 ◽  
Vol 84 (19) ◽  
Author(s):  
Yinghua Xu ◽  
Xudong Feng ◽  
Jintong Jia ◽  
Xinyi Chen ◽  
Tian Jiang ◽  
...  

ABSTRACT Glycyrrhetinic acid 3-O-mono-β-d-glucuronide (GAMG), which possesses a higher sweetness and stronger pharmacological activity than those of glycyrrhizin (GL), can be obtained by removal of the distal glucuronic acid (GlcA) from GL. In this study, we isolated a β-glucuronidase (TpGUS79A) from the filamentous fungus Talaromyces pinophilus Li-93 that can specifically and precisely convert GL to GAMG without the formation of the by-product glycyrrhetinic acid (GA) from the further hydrolysis of GAMG. First, TpGUS79A was purified and identified through matrix-assisted laser desorption ionization–tandem time of flight mass spectrometry (MALDI-TOF-TOF MS) and deglycosylation, indicating that TpGUS79A is a highly N-glycosylated monomeric protein with a molecular mass of around 85 kDa, including around 25 kDa of glycan moiety. The gene for TpGUS79A was then cloned and verified by heterologous expression in Pichia pastoris. TpGUS79A belonged to glycoside hydrolase family 79 (GH79) but shared low amino acid sequence identity (<35%) with the available GH79 GUS enzymes. TpGUS79A had strict specificity toward the glycan moiety but poor specificity toward the aglycone moiety. Interestingly, TpGUS79A recognized and hydrolyzed the distal glucuronic bond of GL but could not cleave the glucuronic bond in GAMG. TpGUS79A showed a much higher catalytic efficiency on GL (kcat/Km of 11.14 mM−1 s−1) than on the artificial substrate pNP β-glucopyranosiduronic acid (kcat/Km of 0.01 mM−1 s−1), which is different from the case for most GUSs. Homology modeling, substrate docking, and sequence alignment were employed to identify the key residues for substrate recognition. Finally, a fed-batch fermentation in a 150-liter fermentor was established to prepare GAMG through GL hydrolysis by T. pinophilus Li-93. Therefore, TpGUS79A is potentially a powerful biocatalyst for environmentally friendly and cost-effective production of GAMG. IMPORTANCE Compared to chemical methods, the biotransformation of glycyrrhizin (GL) into glycyrrhetinic acid 3-O-mono-β-d-glucuronide (GAMG), which has a higher sweetness and stronger pharmacological activity than those of GL, via catalysis by β-glucuronidase is an environmentally friendly approach due to the mild reaction conditions and the high yield of GAMG. However, currently available GUSs show low substrate specificity toward GL and further hydrolyze GAMG to glycyrrhetinic acid (GA) as a by-product, increasing the difficulty of subsequent separation and purification. In the present study, we succeeded in isolating a novel β-glucuronidase (named TpGUS79A) from Talaromyces pinophilus Li-93 that specifically hydrolyzes GL to GAMG without the formation of GA. TpGUS79A also shows higher activity on GL than those of the previously characterized GUSs. Moreover, the gene for TpGUS79A was cloned and its function verified by heterologous expression in P. pastoris. Therefore, TpGUS79A can serve as a powerful biocatalyst for the cost-effective production of GAMG through GL transformation.


1994 ◽  
Vol 72 (02) ◽  
pp. 180-185 ◽  
Author(s):  
David J Mancuso ◽  
Elodee A Tuley ◽  
Ricardo Castillo ◽  
Norma de Bosch ◽  
Pler M Mannucci ◽  
...  

Summaryvon Willebrand factor gene deletions were characterized in four patients with severe type III von Willebrand disease and alloantibodies to von Willebrand factor. A PCR-based strategy was used to characterize the boundaries of the deletions. Identical 30 kb von Willebrand factor gene deletions which include exons 33 through 38 were identified in two siblings of one family by this method. A small 5 base pair insertion (CCTGG) was sequenced at the deletion breakpoint. PCR analysis was used to detect the deletion in three generations of the family, including two family members who are heterozygous for the deletion. In a second family, two type III vWD patients, who are distant cousins, share an -56 kb deletion of exons 22 through 43. The identification and characterization of large vWF gene deletions in these type III vWD patients provides further support for the association between large deletions in both von Willebrand factor alleles and the development of inhibitory alloantibodies.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
M. H. Sanad ◽  
A. B. Farag ◽  
S. F. A. Rizvi

Abstract This study presents development and characterization of a radiotracer, [125I]iodonefiracetam ([125I]iodoNEF). Labeling with high yield and radiochemical purity was achieved through the formation of a [125I]iodoNEF radiotracer after investigating many factors like oxidizing agent content (chloramines-T (Ch-T)), substrate amount (Nefiracetam (NEF)), pH of reaction mixture, reaction time and temperature. Nefiracetam (NEF) is known as nootropic agent, acting as N-methyl-d-aspartic acid receptor ligand (NMDA). The radiolabeled compound was stable, and exhibited the logarithm of the partition coefficient (log p) value of [125I]iodonefiracetam as 1.85 (lipophilic). Biodistribution studies in normal mice confirmed the suitability of the [125I]iodoNEF radiotracer as a novel tracer for brain imaging. High uptake of 8.61 ± 0.14 percent injected dose/g organ was observed in mice


Sign in / Sign up

Export Citation Format

Share Document