scholarly journals Isolation and Characterization of Soil Bacteria That Define Terriglobus gen. nov., in the Phylum Acidobacteria

2007 ◽  
Vol 73 (8) ◽  
pp. 2708-2717 ◽  
Author(s):  
Stephanie A. Eichorst ◽  
John A. Breznak ◽  
Thomas M. Schmidt

ABSTRACT Bacteria in the phylum Acidobacteria are widely distributed and abundant in soils, but their ecological roles are poorly understood, owing in part to a paucity of cultured representatives. In a molecular survey of acidobacterial diversity at the Michigan State University Kellogg Biological Station Long-Term Ecological Research site, 27% of acidobacterial 16S rRNA gene clones in a never-tilled, successional plant community belonged to subdivision 1, whose relative abundance varied inversely with soil pH. Strains of subdivision 1 were isolated from these never-tilled soils using low-nutrient medium incubated for 3 to 4 weeks under elevated levels of carbon dioxide, which resulted in a slightly acidified medium that matched the pH optima of the strains (between 5 and 6). Colonies were approximately 1 mm in diameter and either white or pink, the latter due to a carotenoid(s) that was synthesized preferentially under 20% instead of 2% oxygen. Strains were gram-negative, aerobic, chemo-organotrophic, nonmotile rods that produced an extracellular matrix. All strains contained either one or two copies of the 16S rRNA encoding gene, which along with a relatively slow doubling time (10 to 15 h at ca. 23°C) is suggestive of an oligotrophic lifestyle. Six of the strains are sufficiently similar to one another, but distinct from previously named Acidobacteria, to warrant creation of a new genus, Terriglobus, with Terriglobus roseus defined as the type species. The physiological and nutritional characteristics of Terriglobus are consistent with its potential widespread distribution in soil.

2015 ◽  
Vol 2 (2) ◽  
pp. 86-98
Author(s):  
Dina Dyah Saputri ◽  
Maria Bintang ◽  
Fachriyan H Pasaribu

Endophytic bacteria are microorganisms that live in the internal tissues of plants and have symbiotic mutualism with their host plants. Endophytic bacteria may produce secondary metabolites that can be developed for medical, agricultural, and industrial purposes. Lantana camara is a medicinal plant that has therapeutic potential to treat a variety of diseases such as fever, tuberculosis, rheumatism, asthma, and skin disease. The purpose of this study was to isolate and characterize endophytic bacteria from Lantana camara which has potential to produce antibacterial compounds. The method of this research include isolation of endophytic bacteria of Lantana camara. Antibacterial activity assay was done against four types of pathogenic bacteria i.e. Bacillus cereus, Escherichia coli, Staphylococcus aureus, and Salmonella enteritidis. Characterization of endophytic bacteria was by 16S rRNA gene analysis and identification of antibacterial compounds by GC-MS analysis. Isolation of endophytic bacteria from Lantana camara resulted in BT22 as a potential isolate. Analysis of 16S rRNA gene showed that the BT22 isolate was similar to Bacillus amyloliquefaciens YB-1402 with 99% identity. The results of GC-MS analysis showed some antibacterial compounds such as: Cyclohexanone, 2-[2-(1,3-dithiolan-2-yl)propyl]-6-methyl-3-(1-methylethyl), Octadecane (CAS) n-Octadecane and Tetracosane (CAS) n-Tetracosane.


2021 ◽  
Vol 13 (1) ◽  
pp. 396-401
Author(s):  
Khushbu Parihar ◽  
Alkesh Tak ◽  
Praveen Gehlot ◽  
Rakesh Pathak ◽  
Sunil Kumar Singh

The genus Nocardiopsis is well known to produce secondary metabolites especially antibacterial bioactive compound. Isolation and characterization of bioactive compounds producing novel isolates from unusual habitats are crucial. The present study was aimed to explore Didwana dry salt lake of Rajasthan state in India for the isolation and characterization of actinomycetes. The isolated actinomycetes isolates were characterized based on culture characteristics, biochemical tests and 16S rRNA gene sequencing. The 16S rRNA gene sequence analysis revealed that all the five isolates inhabiting soil of the said dry salt lake of Didwana, Rajasthan belonged to four species of Nocardiopsis viz., N. synnemataformans, N. potens, N. prasina and N. dassonvillei subsp. albirubida. The molecular identification based on 16S rRNA gene sequences was found accurate and robust. The phylogram generated through multiple sequence alignment of all the test isolates of Nocardiopsis revealed that the isolates aroused from a single branch and validated monophyletic association. The present study is the first report of exploring Nocardiopsis isolates from the dry salt lake. These characterized Nocardiopsis isolates isolated from Didwana dry salt lake habitat are novel stains and can be of significance in the detection and utilization of novel bioactive compounds.


2024 ◽  
Vol 84 ◽  
Author(s):  
A. Javaid ◽  
M. Hussain ◽  
K. Aftab ◽  
M. F. Malik ◽  
M. Umar ◽  
...  

Abstract The impact of antibiotics on growth, cocoon production was assessed in addition to isolation and characterization of bacteria associated with silkworm gut of infected larvae. Larval rearing was maintained at recommended conditions of temperature and humidity. Silkworm larvae showing abnormal symptoms were collected from the control group and dissected for gut collection. Bacteria were isolated from the gut content by spreading on agar plates and incubated at 37 °C for 48 hrs. Bacterial identification and phylogenetic analysis were carried out by 16S rRNA gene sequencing. The isolated bacteria were subjected to antimicrobial susceptibility test (disc diffusion methods) by using Penicillin (10 µg/mL), Tetracycline (30 µg/mL), Amoxicillin (25 µg/mL), Ampicillin (10 µg/mL), and Erythromycin (15 µg/mL). All isolated strains showed positive results for the catalase test. We isolated and identified bacterial strains (n = 06) from the gut of healthy and diseased silkworm larvae. Based on the 16S rRNA gene sequence, isolated bacteria showed close relation with Serratia, Bacillus, and Pseudomonas spp. Notably, 83.3% of strains were resistant to Penicillin, Tetracycline, Amoxicillin, Ampicillin, and Erythromycin but 16.6% showed antibiotic susceptibility to the above-mentioned commonly used antibiotics. Silkworm larvae fed on penicillin-treated leaves showed significant improvement in larval weight, larval length, and cocoon production. Significantly higher larval weight (6.88g), larval length (5.84cm), and cocoon weight (1.33g) were recorded for larvae fed on leaves treated with penicillin as compared to other antibiotics. Isolated bacterial strains showed close relation with Serratia spp., Bacillus spp. and Pseudomonas spp.


2002 ◽  
Vol 9 (2) ◽  
pp. 341-343 ◽  
Author(s):  
Anneli Bjöersdorff ◽  
Bodil Bagert ◽  
Robert F. Massung ◽  
Asiya Gusa ◽  
Ingvar Eliasson

ABSTRACT We report the isolation and partial genetic characterization of two equine strains of granulocytic Ehrlichia of the genogroup Ehrlichia phagocytophila. Frozen whole-blood samples from two Swedish horses with laboratory-verified granulocytic ehrlichiosis were inoculated into HL-60 cell cultures. Granulocytic Ehrlichia was isolated and propagated from both horses. DNA extracts from the respective strains were amplified by PCR using primers directed towards the 16S rRNA gene, the groESL heat shock operon gene, and the ank gene. The amplified gene fragments were sequenced and compared to known sequences in the GenBank database. With respect to the 16S rRNA gene, the groESL gene, and the ank gene, the DNA sequences of the two equine Ehrlichia isolates were identical to sequences found in isolates from clinical cases of granulocytic ehrlichiosis in humans and domestic animals in Sweden. However, compared to amplified DNA from an American Ehrlichia strain of the E. phagocytophila genogroup, differences were found in the groESL gene and ank gene sequences.


Author(s):  
John C. Moore

The Long-Term Ecological Research (LTER) program has affected how I conduct and evaluate ecological research. Working with the LTER program has given me a greater appreciation for the complexity of the natural world and has provided a framework to study it. The LTER program has provided the best possible venue to connect ecological research with classroom instruction, mentoring, and professional development. Translating our science to the public is a challenge. My experiences in the LTER program have provided multiple opportunities to work with the public, K–12 and college or university students, and professionals in different fields. This process has honed my communication skills. The ideas that emerge from true collaborative science cannot be understated. The work at an LTER site and within the LTER network works best when we collaborate. I received my undergraduate training in ecology at the University of California (UC) Santa Barbara. At UC Santa Barbara in the 1970s, the ecology program focused largely on populations and communities. Field observations, laboratory studies, manipulative field studies, and equation-based modeling were the norm. I recall the first set of litter and soil samples of arthropods that I sorted were extracted using Tullgren funnels and thought at the time that a person would have to be insane to pursue this type of work as a career. Two years later, I was in the graduate program at Michigan State University working with Dr. Richard Snider where I studied the impacts of herbicides on soil arthropods in no- till corn. At Michigan State, I learned the importance of species life histories, behaviors, and tolerances to environmental variation. My first exposure with the LTER program started in 1979, during my first year of graduate school at Michigan State University. A National Science Foundation (NSF) program officer was visiting the university to promote the concept of the LTER program and the first round of competition. Being 22 years old at the time, it was difficult for me to appreciate discussions about a program that would potentially operate over several decades. As a graduate student, it was a lesson in the planning, extended time frame, and other programmatic logistics of collaborative science.


LWT ◽  
2021 ◽  
Vol 147 ◽  
pp. 111579
Author(s):  
Creciana M. Endres ◽  
Ícaro Maia S. Castro ◽  
Laura D. Trevisol ◽  
Juliana M. Severo ◽  
Michele B. Mann ◽  
...  

2002 ◽  
Vol 68 (9) ◽  
pp. 4390-4398 ◽  
Author(s):  
S. A. F. T. van Hijum ◽  
G. H. van Geel-Schutten ◽  
H. Rahaoui ◽  
M. J. E. C. van der Maarel ◽  
L. Dijkhuizen

ABSTRACT Fructosyltransferase (FTF) enzymes produce fructose polymers (fructans) from sucrose. Here, we report the isolation and characterization of an FTF-encoding gene from Lactobacillus reuteri strain 121. A C-terminally truncated version of the ftf gene was successfully expressed in Escherichia coli. When incubated with sucrose, the purified recombinant FTF enzyme produced large amounts of fructo-oligosaccharides (FOS) with β-(2→1)-linked fructosyl units, plus a high-molecular-weight fructan polymer (>107) with β-(2→1) linkages (an inulin). FOS, but not inulin, was found in supernatants of L. reuteri strain 121 cultures grown on medium containing sucrose. Bacterial inulin production has been reported for only Streptococcus mutans strains. FOS production has been reported for a few bacterial strains. This paper reports the first-time isolation and molecular characterization of (i) a Lactobacillus ftf gene, (ii) an inulosucrase associated with a generally regarded as safe bacterium, (iii) an FTF enzyme synthesizing both a high molecular weight inulin and FOS, and (iv) an FTF protein containing a cell wall-anchoring LPXTG motif. The biological relevance and potential health benefits of an inulosucrase associated with an L. reuteri strain remain to be established.


Sign in / Sign up

Export Citation Format

Share Document