scholarly journals Persistence and Leaching Potential of Microorganisms and Mineral N in Animal Manure Applied to Intact Soil Columns

2012 ◽  
Vol 79 (2) ◽  
pp. 535-542 ◽  
Author(s):  
M. G. Mostofa Amin ◽  
Anita Forslund ◽  
Xuan Thanh Bui ◽  
René K. Juhler ◽  
Søren O. Petersen ◽  
...  

ABSTRACTPathogens may reach agricultural soils through application of animal manure and thereby pose a risk of contaminating crops as well as surface and groundwater. Treatment and handling of manure for improved nutrient and odor management may also influence the amount and fate of manure-borne pathogens in the soil. A study was conducted to investigate the leaching potentials of a phage (Salmonella entericaserovar Typhimurium bacteriophage 28B) and two bacteria,Escherichia coliandEnterococcusspecies, in a liquid fraction of raw pig slurry obtained by solid-liquid separation of this slurry and in this liquid fraction after ozonation, when applied to intact soil columns by subsurface injection. We also compared leaching potentials of surface-applied and subsurface-injected raw slurry. The columns were exposed to irrigation events (3.5-h period at 10 mm h−1) after 1, 2, 3, and 4 weeks of incubation with collection of leachate. By the end of incubation, the distribution and survival of microorganisms in the soil of each treatment and in nonirrigated columns with injected raw slurry or liquid fraction were determined.E. coliin the leachates was quantified by both plate counts and quantitative PCR (qPCR) to assess the proportions of culturable and nonculturable (viable and nonviable) cells. Solid-liquid separation of slurry increased the redistribution in soil of contaminants in the liquid fraction compared to raw slurry, and the percent recovery ofE. coliandEnterococcusspecies was higher for the liquid fraction than for raw slurry after the four leaching events. The liquid fraction also resulted in more leaching of all contaminants exceptEnterococcusspecies than did raw slurry. Ozonation reducedE. colileaching only. Injection enhanced the leaching potential of the microorganisms investigated compared to surface application, probably because of a better survival with subsurface injection and a shorter leaching path.

2013 ◽  
Vol 44 (2s) ◽  
Author(s):  
Niccolò Pampuro ◽  
Alessio Facello ◽  
Eugenio Cavallo

The excessive amount of pig slurry spread on soil has contributed to nitrate water pollution both in surface and in ground waters, especially in areas classified as vulnerable zones to nitrate in accordance with European Regulation (91/676/CEE). Several techniques have been developed to manage livestock slurries as cheaply and conveniently as possible and to reduce potential risks of environmental pollution. Among these techniques, solid-liquid separation of slurry is a common practice in Italy. The liquid fraction can be used for irrigation and the solid fraction, after aerobic stabilization, produces an organic compost rich in humic substances. However, compost derived from swine solid fraction is a low density material (bulk density less than 500 kg􀀀m–3). This makes it costly to transport composted swine solid fraction from production sites to areas where it could be effectively utilized for value-added applications such as in soil fertilization. Densification is one possible way to enhance the storage and transportation of the compost. This study therefore investigates the effect of pressure (20- 110 MPa) and pressure application time (5-120 s) on the compaction characteristics of compost derived from swine solid fraction. Two different types of material have been used: composted swine solid fraction derived from mechanical separation and compost obtained by mixing the first material with wood chips. Results obtained showed that both the pressure applied and the pressure application time significantly affect the density of the compacted samples; while the specific compression energy is significantly affected only by the pressure. Best predictor equations were developed to predict compact density and the specific compression energy required by the densification process. The specific compression energy values based on the results from this study (6-32 kJ􀀀kg–1) were significantly lower than the specific energy required to manufacture pellets from biomass feedstock (typically 19-90 kJ􀀀kg–1).


2011 ◽  
Vol 77 (22) ◽  
pp. 8129-8138 ◽  
Author(s):  
Anita Forslund ◽  
Bo Markussen ◽  
Lise Toenner-Klank ◽  
Tina B. Bech ◽  
Ole Stig Jacobsen ◽  
...  

ABSTRACTIncreasing amounts of livestock manure are being applied to agricultural soil, but it is unknown to what extent this may be associated with contamination of aquatic recipients and groundwater if microorganisms are transported through the soil under natural weather conditions. The objective of this study was therefore to evaluate how injection and surface application of pig slurry on intact sandy clay loam soil cores influenced the leaching ofSalmonella entericaserovar Typhimurium bacteriophage 28B,Escherichia coli, andCryptosporidium parvumoocysts. All three microbial tracers were detected in the leachate on day 1, and the highest relative concentration was detected on the fourth day (0.1 pore volume). Although the concentration of the phage 28B declined over time, the phage was still found in leachate at day 148.C. parvumoocysts and chloride had an additional rise in the relative concentration at a 0.5 pore volume, corresponding to the exchange of the total pore volume. The leaching ofE. coliwas delayed compared with that of the added microbial tracers, indicating a stronger attachment to slurry particles, butE. colicould be detected up to 3 months. Significantly enhanced leaching of phage 28B and oocysts by the injection method was seen, whereas leaching of the indigenousE. coliwas not affected by the application method. Preferential flow was the primary transport vehicle, and the diameter of the fractures in the intact soil cores facilitated transport of all sizes of microbial tracers under natural weather conditions.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Peng Yin ◽  
Yongjun Hou ◽  
Xianjin Wu

PurposeThe purpose of this paper is to obtain the combination of working parameters suitable for pulsating negative pressure shale shaker through simulation, which is conducive to efficient recovery of clean drilling fluid and relatively dry cuttings.Design/methodology/approachShale shaker is still one of the main equipment in solid–solid and solid–liquid separation processes in drilling industry. This research is based on a new drilling fluids circulation treatment device, namely pulsating negative pressure shale shaker. In this work, a numerical study of particle flow and separation in the pulsating negative pressure shale shaker is carried out by coupling computational fluid dynamics/discrete element method (CFD-DEM). The effect of vibration parameters and negative pressure parameters are studied in terms of conveyance velocity and percent through screen.FindingsThe results show that, conveyance velocity of particle is mainly affected by vibration parameters, negative pressure in pulsating form can effectively prevent cuttings from sticking to the screen. Vibration parameters and pulsating airflow velocity peak have great influence on percent through screen, while vibration frequency and screen slope have influence on the time when the percent through screen reaches stability.Originality/valueIn this paper, the authors put forward a new kind of drilling waste fluid treatment equipment, and focused on the study of particle movement law. The results have important guiding significance for the selection of structural design parameters and rational use of equipment. In addition, the new device provides a new idea for solid–liquid separation method, which is one of the hot topics in current research.


2020 ◽  
Vol 10 (16) ◽  
pp. 5652
Author(s):  
José L. S. Pereira ◽  
Vitor Figueiredo ◽  
António F. M. A. Pinto ◽  
Maria E. F. Silva ◽  
Isabel Brás ◽  
...  

The storage of animal manure is a major source of gaseous emissions. The aim of this study was to evaluate the effects of biochar and clinoptilolite on the composition and gaseous emissions during the storage of separated liquid fraction of pig slurry. The experiment was carried out using containers with 6 L of pig slurry each. The additives biochar and clinoptilolite were added alone and mixed to the pig slurry at a rate of 2.5% each, in a total of four treatments with three replicates including the control. Gaseous emissions were monitored by a photoacoustic multigas monitor, and slurry samples were collected at 0 and 85 days and their composition assessed. Results showed that the addition of biochar could modify the physicochemical properties of the slurry. The addition of biochar did not reduce the E. coli during the experiment while clinoptilolite decreased its prevalence. The addition of biochar or clinoptilolite reduced significantly the NH3 emission during the storage of slurry, but no advantages were gained with their combination. The addition of biochar significantly reduced the CO2 and CH4 emissions relative to clinoptilolite, however N2O emissions and global warming potential did not differ among the additives. We conclude that the biochar and clinoptilolite are recommended as a mitigation measure to reduce gaseous emissions and preserve the fertiliser value at slurry storage.


2017 ◽  
Vol 83 (13) ◽  
Author(s):  
David Mantilla-Calderon ◽  
Pei-Ying Hong

ABSTRACT The presence of emerging biological pollutants in treated wastewater effluents has gained attention due to increased interest in water reuse. To evaluate the effectiveness of the removal of such contaminants by the conventional wastewater treatment process, the fate and decay kinetics of NDM-1-positive Escherichia coli strain PI7 and its plasmid-encoded antibiotic resistance genes (ARGs) were assessed in microcosms of anaerobic and aerobic sludge. Results showed that E. coli PI7 decayed at a significantly lower rate under anaerobic conditions. Approximate half-lives were 32.4 ± 1.4 h and 5.9 ± 0.9 h in the anaerobic and aerobic microcosms, respectively. In the aerobic microcosms, after 72 h of operation, E. coli PI7 remained detectable, but no further decay was observed. Instead, 1 in every 10,000 E. coli cells was identified to be recalcitrant to decay and persist indefinitely in the sludge. ARGs associated with the E. coli PI7 strain were detected to have transferred to other native microorganisms in the sludge or were released to the liquid fraction upon host decay. Extracellular DNA quickly degraded in the liquid fraction of the aerobic sludge. In contrast, no DNA decay was detected in the anaerobic sludge water matrix throughout the 24-h sampling period. This study suggests an increased likelihood of environmental dispersion of ARGs associated with anaerobically treated wastewater effluents and highlights the potential importance of persister cells in the dissemination of E. coli in the environment during reuse events of treated wastewater. IMPORTANCE This study examines the decay kinetics of a pathogenic and antibiotic resistant strain of Escherichia coli in microcosms simulating biological treatment units of aerobic and anaerobic sludge. The results of this study point at a significantly prolonged persistence of the E. coli and the associated antibiotic resistance gene in the anaerobic sludge. However, horizontal transfer of the plasmid encoding the antibiotic resistance gene was detected in the aerobic sludge by a cultivation method. A subpopulation of persister E. coli cells was also detected in the aerobic sludge. The findings of this study suggest potential areas of concern arising from pathogenic and antibiotic-resistant E. coli during both anaerobic and aerobic sludge treatment processes.


2012 ◽  
Vol 78 (17) ◽  
pp. 5994-6000 ◽  
Author(s):  
Heidi H. Petersen ◽  
Heidi L. Enemark ◽  
Annette Olsen ◽  
M. G. Mostofa Amin ◽  
Anders Dalsgaard

ABSTRACTThe potential for the transport of viableCryptosporidium parvumoocysts through soil to land drains and groundwater was studied using simulated rainfall and intact soil columns which were applied raw slurry or separated liquid slurry. Following irrigation and weekly samplings over a 4-week period,C. parvumoocysts were detected from all soil columns regardless of slurry type and application method, although recovery rates were low (<1%). Soil columns with injected liquid slurry leached 73 and 90% more oocysts compared to columns with injected and surface-applied raw slurries, respectively. Among leachate samples containing oocysts, 44/72 samples yielded viable oocysts as determined by a dye permeability assay (DAPI [4′,6′-diamidino-2-phenylindole]/propidium iodide) with the majority (41%) of viable oocysts found in leachate from soil columns with added liquid slurry. The number of viable oocysts was positively correlated (r= 0.63) with the total number of oocysts found. Destructively sampling of the soil columns showed that type of slurry and irrigation played a role in the vertical distribution of oocysts, with more oocysts recovered from soil columns added liquid slurry irrespective of the irrigation status. Further studies are needed to determine the effectiveness of different slurry separation technologies to remove oocysts and other pathogens, as well as whether the application of separated liquid slurry to agricultural land may represent higher risks for groundwater contamination compared to application of raw slurry.


Detritus ◽  
2021 ◽  
pp. 24-30
Author(s):  
Agata Gallipoli ◽  
Andrea Gianico ◽  
Simona Crognale ◽  
Simona Rossetti ◽  
Leone Mazzeo ◽  
...  

This innovative Biorefinery platform is based on the integration of a mild thermal pre-treatment and a solid/liquid separation unit to parallel-integrated bioprocesses specifically selected on food waste distinctive chemical composition: a liquid fraction, rich in readily fermentable sugars, to be transformed into valuable biobased products, and a solid organic residue to enhance biomethane production generating a fully hygienized digestate to be recycled. The preliminary results in terms of VFAs yields and composition from the acidogenic stage, and the methane conversion rate from the anaerobic digestion of the solid residue, are here presented


2020 ◽  
Vol 12 (7) ◽  
pp. 2986 ◽  
Author(s):  
Ester Scotto di Perta ◽  
Antonio Mautone ◽  
Marco Oliva ◽  
Elena Cervelli ◽  
Stefania Pindozzi

The storage of livestock manure is responsible for ammonia emissions into the atmosphere. Different natural covers could be used during animal manure storage, but the mitigation effect is influenced by the manure characteristics due to the housing or treatment systems. Starting from cattle and buffalo manure, the objectives of this study were (i) to assess the effect of anaerobic digestion (AD) and solid–liquid separation (SLS) on ammonia emissions during storage as well as natural crust development and (ii) to investigate the reduction in ammonia emissions by using a layer of straw to cover the stored animal manure. Storage conditions were simulated in a small-scale application in a climate-controlled room. Results showed that the higher organic matter content of cow raw slurry facilitated the surface crust formation starting from the first days of storage. AD with SLS increased ammonia emissions (48.5%) due to the increase of the ammoniacal nitrogen content. On the other hand, animal manure covered with a layer of straw showed a 7.3% reduction of ammonia emissions. This study suggests that treatments and covering strategies must be calibrated to different manure types to enhance the mitigation effect.


Sign in / Sign up

Export Citation Format

Share Document