scholarly journals Phage-Encoded Colanic Acid-Degrading Enzyme Permits Lytic Phage Infection of a Capsule-Forming Resistant Mutant Escherichia coli Strain

2014 ◽  
Vol 81 (3) ◽  
pp. 900-909 ◽  
Author(s):  
Min Soo Kim ◽  
Young Deuk Kim ◽  
Sung Sik Hong ◽  
Kwangseo Park ◽  
Kwan Soo Ko ◽  
...  

ABSTRACTIn this study, we isolated a bacteriophage T7-resistant mutant strain ofEscherichia coli(named S3) and then proceeded to characterize it. The mutant bacterial colonies appeared to be mucoid. Microarray analysis revealed that genes related to colanic acid production were upregulated in the mutant. Increases in colanic acid production by the mutant bacteria were observed whenl-fucose was measured biochemically, and protective capsule formation was observed under an electron microscope. We found a point mutation in thelongene promoter in S3, the mutant bacterium. Overproduction of colanic acid was observed in some phage-resistant mutant bacteria after infection with other bacteriophages, T4 and lambda. Colanic acid overproduction was also observed in clinical isolates ofE. coliupon phage infection. The overproduction of colanic acid resulted in the inhibition of bacteriophage adsorption to the host. Biofilm formation initially decreased shortly after infection but eventually increased after 48 h of incubation due to the emergence of the mutant bacteria. Bacteriophage PBECO4 was shown to infect the colanic acid-overproducing mutant strains ofE. coli. We confirmed that the gene product of open reading frame 547 (ORF547) of PBECO4 harbored colanic acid-degrading enzymatic (CAE) activity. Treatment of the T7-resistant bacteria with both T7 and PBECO4 or its purified enzyme (CAE) led to successful T7 infection. Biofilm formation decreased with the mixed infection, too. This procedure, using a phage cocktail different from those exploiting solely receptor differences, represents a novel strategy for overcoming phage resistance in mutant bacteria.

2016 ◽  
Vol 198 (11) ◽  
pp. 1576-1584 ◽  
Author(s):  
Ge Ren ◽  
Zhou Wang ◽  
Ye Li ◽  
Xiaoqing Hu ◽  
Xiaoyuan Wang

ABSTRACTWhen 10Escherichia colimutant strains with defects in lipopolysaccharide (LPS) core biosynthesis were grown on agar medium at 30°C, four of them, the ΔwaaF, ΔwaaG, ΔwaaP, and ΔwaaBstrains, formed mucoid colonies, while the other six, the ΔwaaU, ΔwaaR, ΔwaaO, ΔwaaC, ΔwaaQ, and ΔwaaYstrains, did not. Using light microscopy with tannin mordant staining, the presence of exopolysaccharide around the cells of the mutants that formed mucoid colonies could be discerned. The ΔwaaFmutant produced the largest amounts of exopolysaccharide, regardless of whether it was grown on agar or in liquid medium. The exopolysaccharide was isolated from the liquid growth medium of ΔwaaFcells, hydrolyzed, and analyzed by high-performance liquid chromatography with an ion-exchange column, and the results indicated that the exopolysaccharide was consistent with colanic acid. When the key genes related to the biosynthesis of colanic acid, i.e.,wza,wzb,wzc, andwcaA, were deleted in the ΔwaaFbackground, the exopolysaccharide could not be produced any more, further confirming that it was colanic acid. Colanic acid could not be produced in strains in whichrcsA,rcsB,rcsD, orrcsFwas deleted in the ΔwaaFbackground, but a reduced level of colanic acid production was detected when thercsCgene was deleted, suggesting that a change of lipopolysaccharide structure in ΔwaaFcells might be sensed by the RcsCDB phosphorelay system, leading to the production of colanic acid. The results demonstrate thatE. colicells can activate colanic acid production through the RcsCDB phosphorelay system in response to a structural deficiency of lipopolysaccharide.IMPORTANCELipopolysaccharide and colanic acid are important forms of exopolysaccharide forEscherichia colicells. Their metabolism and biological significance have been investigated, but their interrelation with the cell stress response process is not understood. This study demonstrates, for the first time, thatE. colicells can activate colanic acid production through the RcsCDB phosphorelay system in response to a structural change of lipopolysaccharide, suggesting that bacterial cells can monitor the outer membrane integrity, which is essential for cell survival and damage repair.


2014 ◽  
Vol 81 (2) ◽  
pp. 713-725 ◽  
Author(s):  
John W. Schmidt ◽  
Getahun E. Agga ◽  
Joseph M. Bosilevac ◽  
Dayna M. Brichta-Harhay ◽  
Steven D. Shackelford ◽  
...  

ABSTRACTSpecific concerns have been raised that third-generation cephalosporin-resistant (3GCr)Escherichia coli, trimethoprim-sulfamethoxazole-resistant (COTr)E. coli, 3GCrSalmonella enterica, and nalidixic acid-resistant (NALr)S. entericamay be present in cattle production environments, persist through beef processing, and contaminate final products. The prevalences and concentrations of these organisms were determined in feces and hides (at feedlot and processing plant), pre-evisceration carcasses, and final carcasses from three lots of fed cattle (n= 184). The prevalences and concentrations were further determined for strip loins from 103 of the carcasses. 3GCrSalmonellawas detected on 7.6% of hides during processing and was not detected on the final carcasses or strip loins. NALrS. entericawas detected on only one hide. 3GCrE. coliand COTrE. coliwere detected on 100.0% of hides during processing. Concentrations of 3GCrE. coliand COTrE. colion hides were correlated with pre-evisceration carcass contamination. 3GCrE. coliand COTrE. coliwere each detected on only 0.5% of final carcasses and were not detected on strip loins. Five hundred and 42 isolates were screened for extraintestinal pathogenicE. coli(ExPEC) virulence-associated markers. Only two COTrE. coliisolates from hides were ExPEC, indicating that fed cattle products are not a significant source of ExPEC causing human urinary tract infections. The very low prevalences of these organisms on final carcasses and their absence on strip loins demonstrate that current sanitary dressing procedures and processing interventions are effective against antimicrobial-resistant bacteria.


Microbiology ◽  
2021 ◽  
Vol 167 (3) ◽  
Author(s):  
Sathi Mallick ◽  
Shanti Kiran ◽  
Tapas Kumar Maiti ◽  
Anindya S. Ghosh

Escherichia coli low-molecular-mass (LMM) Penicillin-binding proteins (PBPs) help in hydrolysing the peptidoglycan fragments from their cell wall and recycling them back into the growing peptidoglycan matrix, in addition to their reported involvement in biofilm formation. Biofilms are external slime layers of extra-polymeric substances that sessile bacterial cells secrete to form a habitable niche for themselves. Here, we hypothesize the involvement of Escherichia coli LMM PBPs in regulating the nature of exopolysaccharides (EPS) prevailing in its extra-polymeric substances during biofilm formation. Therefore, this study includes the assessment of physiological characteristics of E. coli CS109 LMM PBP deletion mutants to address biofilm formation abilities, viability and surface adhesion. Finally, EPS from parent CS109 and its ΔPBP4 and ΔPBP5 mutants were purified and analysed for sugars present. Deletions of LMM PBP reduced biofilm formation, bacterial adhesion and their viability in biofilms. Deletions also diminished EPS production by ΔPBP4 and ΔPBP5 mutants, purification of which suggested an increased overall negative charge compared with their parent. Also, EPS analyses from both mutants revealed the appearance of an unusual sugar, xylose, that was absent in CS109. Accordingly, the reason for reduced biofilm formation in LMM PBP mutants may be speculated as the subsequent production of xylitol and a hindrance in the standard flow of the pentose phosphate pathway.


2008 ◽  
Vol 190 (22) ◽  
pp. 7479-7490 ◽  
Author(s):  
Thithiwat May ◽  
Satoshi Okabe

ABSTRACT It has been shown that Escherichia coli harboring the derepressed IncFI and IncFII conjugative F plasmids form complex mature biofilms by using their F-pilus connections, whereas a plasmid-free strain forms only patchy biofilms. Therefore, in this study we investigated the contribution of a natural IncF conjugative F plasmid to the formation of E. coli biofilms. Unlike the presence of a derepressed F plasmid, the presence of a natural IncF F plasmid promoted biofilm formation by generating the cell-to-cell mating F pili between pairs of F+ cells (approximately two to four pili per cell) and by stimulating the formation of colanic acid and curli meshwork. Formation of colanic acid and curli was required after the initial deposition of F-pilus connections to generate a three-dimensional mushroom-type biofilm. In addition, we demonstrated that the conjugative factor of F plasmid, rather than a pilus synthesis function, was involved in curli production during biofilm formation, which promoted cell-surface interactions. Curli played an important role in the maturation process. Microarray experiments were performed to identify the genes involved in curli biosynthesis and regulation. The results suggested that a natural F plasmid was more likely an external activator that indirectly promoted curli production via bacterial regulatory systems (the EnvZ/OmpR two-component regulators and the RpoS and HN-S global regulators). These data provided new insights into the role of a natural F plasmid during the development of E. coli biofilms.


mSphere ◽  
2019 ◽  
Vol 4 (4) ◽  
Author(s):  
Kelvin G. K. Goh ◽  
Danilo G. Moriel ◽  
Steven J. Hancock ◽  
Minh-Duy Phan ◽  
Mark A. Schembri

ABSTRACT Proteins secreted by the type V secretion system possess multiple functions, including the capacity to mediate adhesion, aggregation, and biolfilm formation. The type V secretion system can be divided into five subclasses, one of which is the type Ve system. Proteins of the type Ve secretion system are also referred to as inverse autotransporters (IATs). In this study, we performed an in silico analysis of 126 completely sequenced Escherichia coli genomes available in the NCBI database and identified several distinct IAT-encoding gene families whose distribution varied throughout the E. coli phylogeny. The genes included three characterized IATs (intimin, fdeC, and yeeJ) and four uncharacterized IATs (here named iatA, iatB, iatC, and iatD). The four iat genes were cloned from the completely sequenced environmental E. coli strain SMS-3-5 and characterized. Three of these IAT proteins (IatB, IatC, and IatD) were expressed at the cell surface and possessed the capacity to mediate biofilm formation in a recombinant E. coli K-12 strain. Further analysis of the iatB gene, which showed a unique association with extraintestinal E. coli strains, suggested that its regulation is controlled by the LeuO global regulator. Overall, this study provides new data describing the prevalence, sequence variation, domain structure, function, and regulation of IATs found in E. coli. IMPORTANCE Escherichia coli is one of the most prevalent facultative anaerobes of the human gut. E. coli normally exists as a harmless commensal but can also cause disease following the acquisition of genes that enhance its pathogenicity. Adhesion is an important first step in colonization of the host and is mediated by an array of cell surface components. In E. coli, these include a family of adhesins secreted by the type V secretion system. Here, we identified and characterized new proteins from an emerging subclass of the type V secretion system known as the inverse autotransporters (IATs). We found that IAT-encoding genes are present in a wide range of strains and showed that three novel IATs were localized on the E. coli cell surface and mediated biofilm formation. Overall, this study provides new insight into the prevalence, function, and regulation of IATs in E. coli.


mBio ◽  
2020 ◽  
Vol 11 (2) ◽  
Author(s):  
Leanid Laganenka ◽  
María Esteban López ◽  
Remy Colin ◽  
Victor Sourjik

ABSTRACT Bacterial flagellar motility plays an important role in many processes that occur at surfaces or in hydrogels, including adhesion, biofilm formation, and bacterium-host interactions. Consequently, expression of flagellar genes, as well as genes involved in biofilm formation and virulence, can be regulated by the surface contact. In a few bacterial species, flagella themselves are known to serve as mechanosensors, where an increased load on flagella experienced during surface contact or swimming in viscous media controls gene expression. In this study, we show that gene regulation by motility-dependent mechanosensing is common among pathogenic Escherichia coli strains. This regulatory mechanism requires flagellar rotation, and it enables pathogenic E. coli to repress flagellar genes at low loads in liquid culture, while activating motility in porous medium (soft agar) or upon surface contact. It also controls several other cellular functions, including metabolism and signaling. The mechanosensing response in pathogenic E. coli depends on the negative regulator of motility, RflP (YdiV), which inhibits basal expression of flagellar genes in liquid. While no conditional inhibition of flagellar gene expression in liquid and therefore no upregulation in porous medium was observed in the wild-type commensal or laboratory strains of E. coli, mechanosensitive regulation could be recovered by overexpression of RflP in the laboratory strain. We hypothesize that this conditional activation of flagellar genes in pathogenic E. coli reflects adaptation to the dual role played by flagella and motility during infection. IMPORTANCE Flagella and motility are widespread virulence factors among pathogenic bacteria. Motility enhances the initial host colonization, but the flagellum is a major antigen targeted by the host immune system. Here, we demonstrate that pathogenic E. coli strains employ a mechanosensory function of the flagellar motor to activate flagellar expression under high loads, while repressing it in liquid culture. We hypothesize that this mechanism allows pathogenic E. coli to regulate its motility dependent on the stage of infection, activating flagellar expression upon initial contact with the host epithelium, when motility is beneficial, but reducing it within the host to delay the immune response.


2020 ◽  
Vol 86 (8) ◽  
Author(s):  
Mykhailo Savin ◽  
Gabriele Bierbaum ◽  
Jens Andre Hammerl ◽  
Céline Heinemann ◽  
Marijo Parcina ◽  
...  

ABSTRACT The wastewater of livestock slaughterhouses is considered a source of antimicrobial-resistant bacteria with clinical relevance and may thus be important for their dissemination into the environment. To get an overview of their occurrence and characteristics, we investigated process water (n = 50) from delivery and unclean areas as well as wastewater (n = 32) from the in-house wastewater treatment plants (WWTPs) of two German poultry slaughterhouses (slaughterhouses S1 and S2). The samples were screened for ESKAPE bacteria (Enterococcus spp., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp.) and Escherichia coli. Their antimicrobial resistance phenotypes and the presence of extended-spectrum-β-lactamase (ESBL), carbapenemase, and mobilizable colistin resistance genes were determined. Selected ESKAPE bacteria were epidemiologically classified using different molecular typing techniques. At least one of the target species was detected in 87.5% (n = 28/32) of the wastewater samples and 86.0% (n = 43/50) of the process water samples. The vast majority of the recovered isolates (94.9%, n = 448/472) was represented by E. coli (39.4%), the A. calcoaceticus-A. baumannii (ACB) complex (32.4%), S. aureus (12.3%), and K. pneumoniae (10.8%), which were widely distributed in the delivery and unclean areas of the individual slaughterhouses, including their wastewater effluents. Enterobacter spp., Enterococcus spp., and P. aeruginosa were less abundant and made up 5.1% of the isolates. Phenotypic and genotypic analyses revealed that the recovered isolates exhibited diverse resistance phenotypes and β-lactamase genes. In conclusion, wastewater effluents from the investigated poultry slaughterhouses exhibited clinically relevant bacteria (E. coli, methicillin-resistant S. aureus, K. pneumoniae, and species of the ACB and Enterobacter cloacae complexes) that contribute to the dissemination of clinically relevant resistances (i.e., blaCTX-M or blaSHV and mcr-1) in the environment. IMPORTANCE Bacteria from livestock may be opportunistic pathogens and carriers of clinically relevant resistance genes, as many antimicrobials are used in both veterinary and human medicine. They may be released into the environment from wastewater treatment plants (WWTPs), which are influenced by wastewater from slaughterhouses, thereby endangering public health. Moreover, process water that accumulates during the slaughtering of poultry is an important reservoir for livestock-associated multidrug-resistant bacteria and may serve as a vector of transmission to occupationally exposed slaughterhouse employees. Mitigation solutions aimed at the reduction of the bacterial discharge into the production water circuit as well as interventions against their further transmission and dissemination need to be elaborated. Furthermore, the efficacy of in-house WWTPs needs to be questioned. Reliable data on the occurrence and diversity of clinically relevant bacteria within the slaughtering production chain and in the WWTP effluents in Germany will help to assess their impact on public and environmental health.


2016 ◽  
Vol 198 (24) ◽  
pp. 3329-3334 ◽  
Author(s):  
David A. Hufnagel ◽  
Margery L. Evans ◽  
Sarah E. Greene ◽  
Jerome S. Pinkner ◽  
Scott J. Hultgren ◽  
...  

ABSTRACTThe extracellular matrix protectsEscherichia colifrom immune cells, oxidative stress, predation, and other environmental stresses. Production of theE. coliextracellular matrix is regulated by transcription factors that are tuned to environmental conditions. The biofilm master regulator protein CsgD upregulates curli and cellulose, the two major polymers in the extracellular matrix of uropathogenicE. coli(UPEC) biofilms. We found that cyclic AMP (cAMP) regulates curli, cellulose, and UPEC biofilms throughcsgD. The alarmone cAMP is produced by adenylate cyclase (CyaA), and deletion ofcyaAresulted in reduced extracellular matrix production and biofilm formation. Thecataboliterepressorprotein (CRP) positively regulatedcsgDtranscription, leading to curli and cellulose production in the UPEC isolate, UTI89. Glucose, a known inhibitor of CyaA activity, blocked extracellular matrix formation when added to the growth medium. The mutant strains ΔcyaAand Δcrpdid not produce rugose biofilms, pellicles, curli, cellulose, or CsgD. Three putative CRP binding sites were identified within thecsgD-csgBintergenic region, and purified CRP could gel shift thecsgD-csgBintergenic region. Additionally, we found that CRP binded upstream ofkpsMT, which encodes machinery for K1 capsule production. Together our work shows that cAMP and CRP influenceE. colibiofilms through transcriptional regulation ofcsgD.IMPORTANCEThecataboliterepressorprotein (CRP)-cyclic AMP (cAMP) complex influences the transcription of ∼7% of genes on theEscherichia colichromosome (D. Zheng, C. Constantinidou, J. L. Hobman, and S. D. Minchin, Nucleic Acids Res 32:5874–5893, 2004,https://dx.doi.org/10.1093/nar/gkh908). Glucose inhibitsE. colibiofilm formation, and ΔcyaAand Δcrpmutants show impaired biofilm formation (D. W. Jackson, J.W. Simecka, and T. Romeo, J Bacteriol 184:3406–3410, 2002,https://dx.doi.org/10.1128/JB.184.12.3406-3410.2002). We determined that the cAMP-CRP complex regulates curli and cellulose production and the formation of rugose and pellicle biofilms throughcsgD. Additionally, we propose that cAMP may work as a signaling compound for uropathogenicE. coli(UPEC) to transition from the bladder lumen to inside epithelial cells for intracellular bacterial community formation through K1 capsule regulation.


2017 ◽  
Vol 83 (8) ◽  
Author(s):  
Shireen Kotay ◽  
Weidong Chai ◽  
William Guilford ◽  
Katie Barry ◽  
Amy J. Mathers

ABSTRACT There have been an increasing number of reports implicating Gammaproteobacteria as often carrying genes of drug resistance from colonized sink traps to vulnerable hospitalized patients. However, the mechanism of transmission from the wastewater of the sink P-trap to patients remains poorly understood. Herein we report the use of a designated hand-washing sink lab gallery to model dispersion of green fluorescent protein (GFP)-expressing Escherichia coli from sink wastewater to the surrounding environment. We found no dispersion of GFP-expressing E. coli directly from the P-trap to the sink basin or surrounding countertop with coincident water flow from a faucet. However, when the GFP-expressing E. coli cells were allowed to mature in the P-trap under conditions similar to those in a hospital environment, a GFP-expressing E. coli-containing putative biofilm extended upward over 7 days to reach the strainer. This subsequently resulted in droplet dispersion to the surrounding areas (<30 in.) during faucet operation. We also demonstrated that P-trap colonization could occur by retrograde transmission along a common pipe. We postulate that the organisms mobilize up to the strainer from the P-trap, resulting in droplet dispersion rather than dispersion directly from the P-trap. This work helps to further define the mode of transmission of bacteria from a P-trap reservoir to a vulnerable hospitalized patient. IMPORTANCE Many recent reports demonstrate that sink drain pipes become colonized with highly consequential multidrug-resistant bacteria, which then results in hospital-acquired infections. However, the mechanism of dispersal of bacteria from the sink to patients has not been fully elucidated. Through establishment of a unique sink gallery, this work found that a staged mode of transmission involving biofilm growth from the lower pipe to the sink strainer and subsequent splatter to the bowl and surrounding area occurs rather than splatter directly from the water in the lower pipe. We have also demonstrated that bacterial transmission can occur via connections in wastewater plumbing to neighboring sinks. This work helps to more clearly define the mechanism and risk of transmission from a wastewater source to hospitalized patients in a world with increasingly antibiotic-resistant bacteria that can thrive in wastewater environments and cause infections in vulnerable patients.


2015 ◽  
Vol 13 (4) ◽  
pp. 1020-1028 ◽  
Author(s):  
Stefanie Heß ◽  
Claudia Gallert

Tolerance of antibiotic susceptible and antibiotic resistant Escherichia coli, Enterococcus and Staphylococcus strains from clinical and wastewater samples against ozone was tested to investigate if ozone, a strong oxidant applied for advanced wastewater treatment, will affect the release of antibiotic resistant bacteria into the aquatic environment. For this purpose, the resistance pattern against antibiotics of the mentioned isolates and their survival after exposure to 4 mg/L ozone was determined. Antibiotic resistance (AR) of the isolates was not correlating with higher tolerance against ozone. Except for ampicillin resistant E. coli strains, which showed a trend towards increased resistance, E. coli strains that were also resistant against cotrimoxazol, ciprofloxacin or a combination of the three antibiotics were similarly or less resistant against ozone than antibiotic sensitive strains. Pigment-producing Enterococcus casseliflavus and Staphylococcus aureus seemed to be more resistant against ozone than non-pigmented species of these genera. Furthermore, aggregation or biofilm formation apparently protected bacteria in subsurface layers from inactivation by ozone. The relatively large variance of tolerance against ozone may indicate that resistance to ozone inactivation most probably depends on several factors, where AR, if at all, does not play a major role.


Sign in / Sign up

Export Citation Format

Share Document