scholarly journals A Previously Uncharacterized, Nonphotosynthetic Member of the Chromatiaceae Is the Primary CO2-Fixing Constituent in a Self-Regenerating Biocathode

2014 ◽  
Vol 81 (2) ◽  
pp. 699-712 ◽  
Author(s):  
Zheng Wang ◽  
Dagmar H. Leary ◽  
Anthony P. Malanoski ◽  
Robert W. Li ◽  
W. Judson Hervey ◽  
...  

ABSTRACTBiocathode extracellular electron transfer (EET) may be exploited for biotechnology applications, including microbially mediated O2reduction in microbial fuel cells and microbial electrosynthesis. However, biocathode mechanistic studies needed to improve or engineer functionality have been limited to a few select species that form sparse, homogeneous biofilms characterized by little or no growth. Attempts to cultivate isolates from biocathode environmental enrichments often fail due to a lack of some advantage provided by life in a consortium, highlighting the need to study and understand biocathode consortiain situ. Here, we present metagenomic and metaproteomic characterization of a previously described biocathode biofilm (+310 mV versus a standard hydrogen electrode [SHE]) enriched from seawater, reducing O2, and presumably fixing CO2for biomass generation. Metagenomics identified 16 distinct cluster genomes, 15 of which could be assigned at the family or genus level and whose abundance was roughly divided betweenAlpha- andGammaproteobacteria. A total of 644 proteins were identified from shotgun metaproteomics and have been deposited in the the ProteomeXchange with identifier PXD001045. Cluster genomes were used to assign the taxonomic identities of 599 proteins, withMarinobacter,Chromatiaceae, andLabrenziathe most represented. RubisCO and phosphoribulokinase, along with 9 other Calvin-Benson-Bassham cycle proteins, were identified fromChromatiaceae. In addition, proteins similar to those predicted for iron oxidation pathways of known iron-oxidizing bacteria were observed forChromatiaceae. These findings represent the first description of putative EET and CO2fixation mechanisms for a self-regenerating, self-sustaining multispecies biocathode, providing potential targets for functional engineering, as well as new insights into biocathode EET pathways using proteomics.

Genes ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 517 ◽  
Author(s):  
Daniel García-Souto ◽  
Sandra Alonso-Rubido ◽  
Diana Costa ◽  
José Eirín-López ◽  
Emilio Rolán-Álvarez ◽  
...  

Periwinkles of the family Littorinidae (Children, 1834) are common members of seashore littoral communities worldwide. Although the family is composed of more than 200 species belonging to 18 genera, chromosome numbers have been described in only eleven of them. A molecular cytogenetic analysis of nine periwinkle species, the rough periwinkles Littorina arcana, L. saxatilis, and L. compressa, the flat periwinkles L. obtusata and L. fabalis, the common periwinkle L. littorea, the mangrove periwinkle Littoraria angulifera, the beaded periwinkle Cenchritis muricatus, and the small periwinkle Melarhaphe neritoides was performed. All species showed diploid chromosome numbers of 2n = 34, and karyotypes were mostly composed of metacentric and submetacentric chromosome pairs. None of the periwinkle species showed chromosomal differences between male and female specimens. The chromosomal mapping of major and minor rDNA and H3 histone gene clusters by fluorescent in situ hybridization demonstrated that the patterns of distribution of these DNA sequences were conserved among closely related species and differed among less related ones. All signals occupied separated loci on different chromosome pairs without any evidence of co-localization in any of the species.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Uedson Pereira Jacobina ◽  
Marcelo de Bello Cioffi ◽  
Luiz Gustavo Rodrigues Souza ◽  
Leonardo Luiz Calado ◽  
Manoel Tavares ◽  
...  

The cobia,Rachycentron canadum, a species of marine fish, has been increasingly used in aquaculture worldwide. It is the only member of the family Rachycentridae (Perciformes) showing wide geographic distribution and phylogenetic patterns still not fully understood. In this study, the species was cytogenetically analyzed by different methodologies, including Ag-NOR and chromomycin A3(CMA3)/DAPI staining, C-banding, early replication banding (RGB), andin situfluorescent hybridization with probes for 18S and 5S ribosomal genes and for telomeric sequences (TTAGGG)n. The results obtained allow a detailed chromosomal characterization of the Atlantic population. The chromosome diversification found in the karyotype of the cobia is apparently related to pericentric inversions, the main mechanism associated to the karyotypic evolution of Perciformes. The differential heterochromatin replication patterns found were in part associated to functional genes. Despite maintaining conservative chromosomal characteristics in relation to the basal pattern established for Perciformes, some chromosome pairs in the analyzed population exhibit markers that may be important for cytotaxonomic, population, and biodiversity studies as well as for monitoring the species in question.


2011 ◽  
Vol 77 (24) ◽  
pp. 8635-8647 ◽  
Author(s):  
Man-Young Jung ◽  
Soo-Je Park ◽  
Deullae Min ◽  
Jin-Seog Kim ◽  
W. Irene C. Rijpstra ◽  
...  

ABSTRACTSoil nitrification is an important process for agricultural productivity and environmental pollution. Though one cultivated representative of ammonia-oxidizingArchaeafrom soil has been described, additional representatives warrant characterization. We describe an ammonia-oxidizing archaeon (strain MY1) in a highly enriched culture derived from agricultural soil. Fluorescencein situhybridization microscopy showed that, after 2 years of enrichment, the culture was composed of >90% archaeal cells. Clone libraries of both 16S rRNA and archaealamoAgenes featured a single sequence each. No bacterialamoAgenes could be detected by PCR. A [13C]bicarbonate assimilation assay showed stoichiometric incorporation of13C intoArchaea-specific glycerol dialkyl glycerol tetraethers. Strain MY1 falls phylogenetically within crenarchaeal group I.1a; sequence comparisons to “CandidatusNitrosopumilus maritimus” revealed 96.9% 16S rRNA and 89.2%amoAgene similarities. Completed growth assays showed strain MY1 to be chemoautotrophic, mesophilic (optimum at 25°C), neutrophilic (optimum at pH 6.5 to 7.0), and nonhalophilic (optimum at 0.2 to 0.4% salinity). Kinetic respirometry assays showed that strain MY1's affinities for ammonia and oxygen were much higher than those of ammonia-oxidizing bacteria (AOB). The yield of the greenhouse gas N2O in the strain MY1 culture was lower but comparable to that of soil AOB. We propose that this new soil ammonia-oxidizing archaeon be designated “CandidatusNitrosoarchaeum koreensis.”


mBio ◽  
2019 ◽  
Vol 10 (2) ◽  
Author(s):  
Annette R. Rowe ◽  
Shuai Xu ◽  
Emily Gardel ◽  
Arpita Bose ◽  
Peter Girguis ◽  
...  

ABSTRACTTheMethanosarcinales, a lineage of cytochrome-containing methanogens, have recently been proposed to participate in direct extracellular electron transfer interactions within syntrophic communities. To shed light on this phenomenon, we applied electrochemical techniques to measure electron uptake from cathodes byMethanosarcina barkeri, which is an important model organism that is genetically tractable and utilizes a wide range of substrates for methanogenesis. Here, we confirm the ability ofM. barkerito perform electron uptake from cathodes and show that this cathodic current is linked to quantitative increases in methane production. The underlying mechanisms we identified include, but are not limited to, a recently proposed association between cathodes and methanogen-derived extracellular enzymes (e.g., hydrogenases) that can facilitate current generation through the formation of reduced and diffusible methanogenic substrates (e.g., hydrogen). However, after minimizing the contributions of such extracellular enzymes and using a mutant lacking hydrogenases, we observe a lower-potential hydrogen-independent pathway that facilitates cathodic activity coupled to methane production inM. barkeri. Our electrochemical measurements of wild-type and mutant strains point to a novel and hydrogenase-free mode of electron uptake with a potential near −484 mV versus standard hydrogen electrode (SHE) (over 100 mV more reduced than the observed hydrogenase midpoint potential under these conditions). These results suggest thatM. barkerican perform multiple modes (hydrogenase-mediated and free extracellular enzyme-independent modes) of electrode interactions on cathodes, including a mechanism pointing to a direct interaction, which has significant applied and ecological implications.IMPORTANCEMethanogenic archaea are of fundamental applied and environmental relevance. This is largely due to their activities in a wide range of anaerobic environments, generating gaseous reduced carbon that can be utilized as a fuel source. While the bioenergetics of a wide variety of methanogens have been well studied with respect to soluble substrates, a mechanistic understanding of their interaction with solid-phase redox-active compounds is limited. This work provides insight into solid-phase redox interactions inMethanosarcinaspp. using electrochemical methods. We highlight a previously undescribed mode of electron uptake from cathodes that is potentially informative of direct interspecies electron transfer interactions in theMethanosarcinales.


2015 ◽  
Vol 82 (4) ◽  
pp. 1215-1226 ◽  
Author(s):  
Francy Jimenez-Infante ◽  
David Kamanda Ngugi ◽  
Manikandan Vinu ◽  
Intikhab Alam ◽  
Allan Anthony Kamau ◽  
...  

ABSTRACTThe OM43 clade within the familyMethylophilaceaeofBetaproteobacteriarepresents a group of methylotrophs that play important roles in the metabolism of C1compounds in marine environments and other aquatic environments around the globe. Using dilution-to-extinction cultivation techniques, we successfully isolated a novel species of this clade (here designated MBRS-H7) from the ultraoligotrophic open ocean waters of the central Red Sea. Phylogenomic analyses indicate that MBRS-H7 is a novel species that forms a distinct cluster together with isolate KB13 from Hawaii (Hawaii-Red Sea [H-RS] cluster) that is separate from the cluster represented by strain HTCC2181 (from the Oregon coast). Phylogenetic analyses using the robust 16S-23S internal transcribed spacer revealed a potential ecotype separation of the marine OM43 clade members, which was further confirmed by metagenomic fragment recruitment analyses that showed trends of higher abundance in low-chlorophyll and/or high-temperature provinces for the H-RS cluster but a preference for colder, highly productive waters for the HTCC2181 cluster. This potential environmentally driven niche differentiation is also reflected in the metabolic gene inventories, which in the case of the H-RS cluster include those conferring resistance to high levels of UV irradiation, temperature, and salinity. Interestingly, we also found different energy conservation modules between these OM43 subclades, namely, the existence of the NADH:quinone oxidoreductase complex I (NUO) system in the H-RS cluster and the nonhomologous NADH:quinone oxidoreductase (NQR) system in the HTCC2181 cluster, which might have implications for their overall energetic yields.


2014 ◽  
Vol 81 (5) ◽  
pp. 1700-1707 ◽  
Author(s):  
Julia Otte ◽  
Achim Mall ◽  
Daniel M. Schubert ◽  
Martin Könneke ◽  
Ivan A. Berg

ABSTRACTThe recently described ammonia-oxidizing archaea of the phylumThaumarchaeotaare highly abundant in marine, geothermal, and terrestrial environments. All characterized representatives of this phylum are aerobic chemolithoautotrophic ammonia oxidizers assimilating inorganic carbon via a recently described thaumarchaeal version of the 3-hydroxypropionate/4-hydroxybutyrate cycle. Although some genes coding for the enzymes of this cycle have been identified in the genomes ofThaumarchaeota, many other genes of the cycle are not homologous to the characterized enzymes from other species and can therefore not be identified bioinformatically. Here we report the identification and characterization of malonic semialdehyde reductase Nmar_1110 in the cultured marine thaumarchaeonNitrosopumilus maritimus. This enzyme, which catalyzes the reduction of malonic semialdehyde with NAD(P)H to 3-hydroxypropionate, belongs to the family of iron-containing alcohol dehydrogenases and is not homologous to malonic semialdehyde reductases fromChloroflexus aurantiacusandMetallosphaera sedula. It is highly specific to malonic semialdehyde (Km, 0.11 mM;Vmax, 86.9 μmol min−1mg−1of protein) and exhibits only low activity with succinic semialdehyde (Km, 4.26 mM;Vmax, 18.5 μmol min−1mg−1of protein). Homologues ofN. maritimusmalonic semialdehyde reductase can be found in the genomes of allThaumarchaeotasequenced so far and form a well-defined cluster in the phylogenetic tree of iron-containing alcohol dehydrogenases. We conclude that malonic semialdehyde reductase can be regarded as a characteristic enzyme for the thaumarchaeal version of the 3-hydroxypropionate/4-hydroxybutyrate cycle.


2011 ◽  
Vol 77 (12) ◽  
pp. 3923-3929 ◽  
Author(s):  
Steve Petrovski ◽  
Robert J. Seviour ◽  
Daniel Tillett

ABSTRACTHydrophobicActinobacteriaare commonly associated with the stabilization of foams in activated sludge systems. One possible attractive approach to control these foam-stabilizing organisms is the use of specific bacteriophages. We describe the genome characterization of a novel polyvalent DNA phage, GTE2, isolated from activated sludge. This phage is lytic forGordonia terrae,Rhodococcus globerulus,Rhodococcus erythropolis,Rhodococcus erythropolis,Nocardia otitidiscaviarum, andNocardia brasiliensis. Phage GTE2 belongs to the familySiphoviridae, possessing a characteristic icosahedral head encapsulating a double-stranded DNA linear genome (45,530 bp) having 10-bp 3′-protruding cohesive ends. The genome sequence is 98% unique at the DNA level and contains 57 putative genes. The genome can be divided into two components, where the first is modular and encodes phage structural proteins and lysis genes. The second is not modular, and the genes harbored there are involved in DNA replication, repair, and metabolism. Some have no known function. GTE2 shows promising results in controlling stable foam production by its host bacteria under laboratory conditions, suggesting that it may prove useful in the field as a biocontrol agent.


2020 ◽  
Vol 21 (21) ◽  
pp. 7915
Author(s):  
Denisa Šimoníková ◽  
Alžběta Němečková ◽  
Jana Čížková ◽  
Allan Brown ◽  
Rony Swennen ◽  
...  

Edible banana cultivars are diploid, triploid, or tetraploid hybrids, which originated by natural cross hybridization between subspecies of diploid Musa acuminata, or between M. acuminata and diploid Musa balbisiana. The participation of two other wild diploid species Musa schizocarpa and Musa textilis was also indicated by molecular studies. The fusion of gametes with structurally different chromosome sets may give rise to progenies with structural chromosome heterozygosity and reduced fertility due to aberrant chromosome pairing and unbalanced chromosome segregation. Only a few translocations have been classified on the genomic level so far, and a comprehensive molecular cytogenetic characterization of cultivars and species of the family Musaceae is still lacking. Fluorescence in situ hybridization (FISH) with chromosome-arm-specific oligo painting probes was used for comparative karyotype analysis in a set of wild Musa species and edible banana clones. The results revealed large differences in chromosome structure, discriminating individual accessions. These results permitted the identification of putative progenitors of cultivated clones and clarified the genomic constitution and evolution of aneuploid banana clones, which seem to be common among the polyploid banana accessions. New insights into the chromosome organization and structural chromosome changes will be a valuable asset in breeding programs, particularly in the selection of appropriate parents for cross hybridization.


2015 ◽  
Vol 84 (3) ◽  
pp. 677-685 ◽  
Author(s):  
Jenni Hietanen ◽  
Anongruk Chim-ong ◽  
Thanprakorn Chiramanewong ◽  
Jakub Gruszczyk ◽  
Wanlapa Roobsoong ◽  
...  

Members of thePlasmodium vivaxreticulocyte binding protein (PvRBP) family are believed to mediate specific invasion of reticulocytes byP. vivax. In this study, we performed molecular characterization of genes encoding members of this protein family. Through cDNA sequencing, we constructed full-length gene models and verified genes that are protein coding and those that are pseudogenes. We also used quantitative PCR to measure theirin vivotranscript abundances in clinicalP. vivaxisolates. Like genes encoding related invasion ligands ofP. falciparum,Pvrbpexpression levels vary broadly across different parasite isolates. Through antibody measurements, we found that host immune pressure may be the driving force behind the distinctly high diversity of one of the family members, PvRBP2c. Mild yet significant negative correlation was found between parasitemia and the PvRBP2b antibody level, suggesting that antibodies to the protein may interfere with invasion.


1971 ◽  
Vol 34 (3) ◽  
pp. 301-309 ◽  
Author(s):  
Wolff M. Kirsch ◽  
Demoy Schulz ◽  
Paul Nakane ◽  
Robert Lasher ◽  
Tadami Yamamoto

✓ Intact lyophilized nuclei and chromosomes were obtained from glioblastomas or brain, either in situ or in culture, by freezing at −156°C, drying at −25°C, and mechanical disassociation in glycerol at 2°C. Nuclear or chromosomal isolation was accomplished in hygroscopic nonaqueous media of high density. The method gave homogeneous nuclear and chromosomal preparations in high yield with preservation of labile, water-soluble constituents and residual biosynthetic activity. Unique opportunities for quantitative cytochemical studies at the level of the subcellular organelle are made available by the method.


Sign in / Sign up

Export Citation Format

Share Document