scholarly journals Revisiting the Regulation of the Primary Scaffoldin Gene in Clostridium thermocellum

2017 ◽  
Vol 83 (8) ◽  
Author(s):  
Lizett Ortiz de Ora ◽  
Iván Muñoz-Gutiérrez ◽  
Edward A. Bayer ◽  
Yuval Shoham ◽  
Raphael Lamed ◽  
...  

ABSTRACT Cellulosomes are considered to be one of the most efficient systems for the degradation of plant cell wall polysaccharides. The central cellulosome component comprises a large, noncatalytic protein subunit called scaffoldin. Multiple saccharolytic enzymes are incorporated into the scaffoldins via specific high-affinity cohesin-dockerin interactions. Recently, the regulation of genes encoding certain cellulosomal components by multiple RNA polymerase alternative σI factors has been demonstrated in Clostridium (Ruminiclostridium) thermocellum. In the present report, we provide experimental evidence demonstrating that the C. thermocellum cipA gene, which encodes the primary cellulosomal scaffoldin, is regulated by several alternative σI factors and by the vegetative σA factor. Furthermore, we show that previously suggested transcriptional start sites (TSSs) of C. thermocellum cipA are actually posttranscriptional processed sites. By using comparative bioinformatic analysis, we have also identified highly conserved σI- and σA-dependent promoters upstream of the primary scaffoldin-encoding genes of other clostridia, namely, Clostridium straminisolvens, Clostridium clariflavum, Acetivibrio cellulolyticus, and Clostridium sp. strain Bc-iso-3. Interestingly, a previously identified TSS of the primary scaffoldin CbpA gene of Clostridium cellulovorans matches the predicted σI-dependent promoter identified in the present work rather than the previously proposed σA promoter. With the exception of C. cellulovorans, both σI and σA promoters of primary scaffoldin genes are located more than 600 nucleotides upstream of the start codon, yielding long 5′-untranslated regions (5′-UTRs). Furthermore, these 5′-UTRs have highly conserved stem-loop structures located near the start codon. We propose that these large 5′-UTRs may be involved in the regulation of both the primary scaffoldin and other cellulosomal components. IMPORTANCE Cellulosome-producing bacteria are among the most effective cellulolytic microorganisms known. This group of bacteria has biotechnological potential for the production of second-generation biofuels and other biocommodities from cellulosic wastes. The efficiency of cellulose hydrolysis is due to their cellulosomes, which arrange enzymes in close proximity on the cellulosic substrate, thereby increasing synergism among the catalytic domains. The backbone of these multienzyme nanomachines is the scaffoldin subunit, which has been the subject of study for many years. However, its genetic regulation is poorly understood. Hence, from basic and applied points of view, it is imperative to unravel the regulatory mechanisms of the scaffoldin genes. The understanding of these regulatory mechanisms can help to improve the performance of the industrially relevant strains of C. thermocellum and related cellulosome-producing bacteria en route to the consolidated bioprocessing of biomass.

2012 ◽  
Vol 11 (4) ◽  
pp. 482-493 ◽  
Author(s):  
Jianping Sun ◽  
Chaoguang Tian ◽  
Spencer Diamond ◽  
N. Louise Glass

ABSTRACTHemicellulose, the second most abundant plant biomass fraction after cellulose, is widely viewed as a potential substrate for the production of liquid fuels and other value-added materials. Degradation of hemicellulose by filamentous fungi requires production of many different enzymes, which are induced by biopolymers or its derivatives and regulated mainly at the transcriptional level through transcription factors (TFs).Neurospora crassa, a model filamentous fungus, expresses and secretes enzymes required for plant cell wall deconstruction. To better understand genes specifically associated with degradation of hemicellulose, we applied secretome and transcriptome analysis toN. crassagrown on beechwood xylan. We identified 34 secreted proteins and 353 genes with elevated transcription on xylan. The xylanolytic phenotype of strains with deletions in genes identified from the secretome and transcriptome analysis of the wild type was assessed, revealing functions for known and unknown proteins associated with hemicellulose degradation. By evaluating phenotypes of strains containing deletions of predicted TF genes inN. crassa, we identified a TF (XLR-1;xylan degradationregulator1) essential for hemicellulose degradation that is an ortholog to XlnR/XYR1 inAspergillusandTrichodermaspecies, respectively, a major transcriptional regulator of genes encoding both cellulases and hemicellulases. Deletion ofxlr-1inN. crassaabolished growth on xylan and xylose, but growth on cellulose and cellulolytic activity were only slightly affected. To determine the regulatory mechanisms for hemicellulose degradation, we explored the transcriptional regulon of XLR-1 under xylose, xylanolytic, and cellulolytic conditions. XLR-1 regulated only some predicted hemicellulase genes inN. crassaand was required for a full induction of several cellulase genes. Hemicellulase gene expression was induced by a combination of release from carbon catabolite repression (CCR) and induction. This systematic analysis illustrates the similarities and differences in regulation of hemicellulose degradation among filamentous fungi.


2016 ◽  
Vol 198 (20) ◽  
pp. 2887-2896 ◽  
Author(s):  
Hildegard Watzlawick ◽  
Kambiz Morabbi Heravi ◽  
Josef Altenbuchner

ABSTRACTBacillus subtilispossesses different enzymes for the utilization of plant cell wall polysaccharides. This includes a gene cluster containing galactan degradation genes (ganAandganB), two transporter component genes (ganQandganP), and the sugar-binding lipoprotein-encoding geneganS(previously known ascycB). These genes form an operon that is regulated by GanR. The degradation of galactan byB. subtilisbegins with the activity of extracellular GanB. GanB is an endo-β-1,4-galactanase and is a member of glycoside hydrolase (GH) family 53. This enzyme was active on high-molecular-weight arabinose-free galactan and mainly produced galactotetraose as well as galactotriose and galactobiose. These galacto-oligosaccharides may enter the cell via the GanQP transmembrane proteins of the galactan ABC transporter. The specificity of the galactan ABC transporter depends on the sugar-binding lipoprotein, GanS. Purified GanS was shown to bind galactotetraose and galactotriose using thermal shift assay. The energy for this transport is provided by MsmX, an ATP-binding protein. The transported galacto-oligosaccharides are further degraded by GanA. GanA is a β-galactosidase that belongs to GH family 42. The GanA enzyme was able to hydrolyze short-chain β-1,4-galacto-oligosaccharides as well as synthetic β-galactopyranosides into galactose. Thermal shift assay as well as electrophoretic mobility shift assay demonstrated that galactobiose is the inducer of the galactan operon regulated by GanR. DNase I footprinting revealed that the GanR protein binds to an operator overlapping the −35 box of the σA-type promoter of Pgan, which is located upstream ofganS.IMPORTANCEBacillus subtilisis a Gram-positive soil bacterium that utilizes different types of carbohydrates, such as pectin, as carbon sources. So far, most of the pectin degradation systems and enzymes have been thoroughly studied inB. subtilis. Nevertheless, theB. subtilisutilization system of galactan, which is found as the side chain of the rhamnogalacturonan type I complex in pectin, has remained partially studied. Here, we investigated the galactan utilization system consisting of theganSPQABoperon and its regulatorganR. This study improves our knowledge of the carbohydrate degradation systems ofB. subtilis, especially the pectin degradation systems. Moreover, the galactan-degrading enzymes may be exploited for the production of galacto-oligosaccharides, which are used as prebiotic substances in the food industry.


2011 ◽  
Vol 77 (21) ◽  
pp. 7541-7550 ◽  
Author(s):  
Michael Iakiviak ◽  
Roderick I. Mackie ◽  
Isaac K. O. Cann

ABSTRACTRuminococcus albus8 is a fibrolytic ruminal bacterium capable of utilization of various plant cell wall polysaccharides. A bioinformatic analysis of a partial genome sequence ofR. albusrevealed several putative enzymes likely to hydrolyze glucans, including lichenin, a mixed-linkage polysaccharide of glucose linked together in β-1,3 and β-1,4 glycosidic bonds. In the present study, we demonstrate the capacity of four glycoside hydrolases (GHs), derived fromR. albus, to hydrolyze lichenin. Two of the genes encoded GH family 5 enzymes (Ra0453 and Ra2830), one gene encoded a GH family 16 enzyme (Ra0505), and the last gene encoded a GH family 3 enzyme (Ra1595). Each gene was expressed inEscherichia coli, and the recombinant protein was purified to near homogeneity. Upon screening on a wide range of substrates, Ra0453, Ra2830, and Ra0505 displayed different hydrolytic properties, as they released unique product profiles. The Ra1595 protein, predicted to function as a β-glucosidase, preferred cleavage of a nonreducing end glucose when linked by a β-1,3 glycosidic bond to the next glucose residue. The major product of Ra0505 hydrolysis of lichenin was predicted to be a glucotriose that was degraded only by Ra0453 to glucose and cellobiose. Most importantly, the four enzymes functioned synergistically to hydrolyze lichenin to glucose, cellobiose, and cellotriose. This lichenin-degrading enzyme mix should be of utility as an additive to feeds administered to monogastric animals, especially those high in fiber.


2016 ◽  
Vol 198 (13) ◽  
pp. 1892-1901 ◽  
Author(s):  
Wei Tang ◽  
Yufeng Wu ◽  
Moran Li ◽  
Jian Wang ◽  
Sha Mei ◽  
...  

ABSTRACTRecent studies have shown that haloarchaea employ leaderless and Shine-Dalgarno (SD)-less mechanisms for translation initiation of leaderless transcripts with a 5′ untranslated region (5′ UTR) of <10 nucleotides (nt) and leadered transcripts with a 5′ UTR of ≥10 nt, respectively. However, whether the two mechanisms can operate on the same naturally occurring haloarchaeal transcript carrying multiple potential start codons is unknown. In this study, the transcript of thesptAgene (encoding an extracellular serine protease ofNatrinemasp. strain J7-2) was experimentally determined and found to contain two potential in-frame AUG codons (AUG1and AUG2) located 5 and 29 nt, respectively, downstream of the transcription start site. Mutational analysis revealed that both AUGs can function as the translation start codon for production of active SptA, although AUG1is more efficient than AUG2for translation initiation. Insertion of a stable stem-loop structure between the two AUGs completely abolished initiation at AUG1but did not affect initiation at AUG2, indicating that AUG2-initiated translation does not involve ribosome scanning from the 5′ end of the transcript. Furthermore, the efficiency of AUG2-initiated translation was not influenced by an upstream SD-like sequence. In addition, both AUG1and AUG2contribute to transcript stability, probably by recruiting ribosomes to protect the transcript against degradation. These data suggest that depending on which of two in-frame start codons is used, thesptAtranscript can act as either a leaderless or a leadered transcript for SptA production in haloarchaea.IMPORTANCEIn eukaryotes and bacteria, alternative translation start sites contribute to proteome complexity and can be used as a functional mechanism to increase translation efficiency. However, little is known about alternative translation initiation in archaea. Our results demonstrate that leaderless and SD-less mechanisms can be used for translation initiation of thesptAtranscript from two in-frame start codons, raising the possibility that in haloarchaea, alternative translation initiation on one transcript functions to increase translation efficiency and/or contribute to proteome complexity.


2014 ◽  
Vol 81 (4) ◽  
pp. 1375-1386 ◽  
Author(s):  
Xin Dai ◽  
Yan Tian ◽  
Jinting Li ◽  
Xiaoyun Su ◽  
Xuewei Wang ◽  
...  

ABSTRACTThe bovine rumen represents a highly specialized bioreactor where plant cell wall polysaccharides (PCWPs) are efficiently deconstructed via numerous enzymes produced by resident microorganisms. Although a large number of fibrolytic genes from rumen microorganisms have been identified, it remains unclear how they are expressed in a coordinated manner to efficiently degrade PCWPs. In this study, we performed a metatranscriptomic analysis of the rumen microbiomes of adult Holstein cows fed a fiber diet and obtained a total of 1,107,083 high-quality non-rRNA reads with an average length of 483 nucleotides. Transcripts encoding glycoside hydrolases (GHs) and carbohydrate binding modules (CBMs) accounted for ∼1% and ∼0.1% of the total non-rRNAs, respectively. The majority (∼98%) of the putative cellulases belonged to four GH families (i.e., GH5, GH9, GH45, and GH48) and were primarily synthesized byRuminococcusandFibrobacter. Notably, transcripts for GH48 cellobiohydrolases were relatively abundant compared to the abundance of transcripts for other cellulases. Two-thirds of the putative hemicellulases were of the GH10, GH11, and GH26 types and were produced by members of the generaRuminococcus,Prevotella, andFibrobacter. Most (∼82%) predicted oligosaccharide-degrading enzymes were GH1, GH2, GH3, and GH43 proteins and were from a diverse group of microorganisms. Transcripts for CBM10 and dockerin, key components of the cellulosome, were also relatively abundant. Our results provide metatranscriptomic evidence in support of the notion that members of the generaRuminococcus,Fibrobacter, andPrevotellaare predominant PCWP degraders and point to the significant contribution of GH48 cellobiohydrolases and cellulosome-like structures to efficient PCWP degradation in the cow rumen.


2019 ◽  
Vol 85 (14) ◽  
Author(s):  
Inger Skrede ◽  
Monica Hongrø Solbakken ◽  
Jaqueline Hess ◽  
Carl Gunnar Fossdal ◽  
Olav Hegnar ◽  
...  

ABSTRACT The aim of this study was to investigate differential expression profiles of the brown rot fungus Rhodonia placenta (previously Postia placenta) harvested at several time points when grown on radiata pine (Pinus radiata) and radiata pine with three different levels of modification by furfuryl alcohol, an environmentally benign commercial wood protection system. The entire gene expression pattern of a decay fungus was followed in untreated and modified wood from initial to advanced stages of decay. The results support the current model of a two-step decay mechanism, with the expression of genes related to initial oxidative depolymerization, followed by an accumulation of transcripts of genes related to the hydrolysis of cell wall polysaccharides. When the wood decay process is finished, the fungus goes into starvation mode after five weeks when grown on unmodified radiata pine wood. The pattern of repression of oxidative processes and oxalic acid synthesis found in radiata pine at later stages of decay is not mirrored for the high-furfurylation treatment. The high treatment level provided a more unpredictable expression pattern throughout the incubation period. Furfurylation does not seem to directly influence the expression of core plant cell wall-hydrolyzing enzymes, as a delayed and prolonged, but similar, pattern was observed in the radiata pine and the modified experiments. This indicates that the fungus starts a common decay process in the modified wood but proceeds at a slower pace as access to the plant cell wall polysaccharides is restricted. This is further supported by the downregulation of hydrolytic enzymes for the high treatment level at the last harvest point (mass loss, 14%). Moreover, the mass loss does not increase during the last weeks. Collectively, this indicates a potential threshold for lower mass loss for the high-furfurylation treatment. IMPORTANCE Fungi are important decomposers of woody biomass in natural habitats. Investigation of the mechanisms employed by decay fungi in their attempt to degrade wood is important for both the basic scientific understanding of ecology and carbon cycling in nature and for applied uses of woody materials. For wooden building materials, long service life and carbon storage are essential, but decay fungi are responsible for massive losses of wood in service. Thus, the optimization of durable wood products for the future is of major importance. In this study, we have investigated the fungal genetic response to furfurylated wood, a commercial environmentally benign wood modification approach that improves the service life of wood in outdoor applications. Our results show that there is a delayed wood decay by the fungus as a response to furfurylated wood, and new knowledge about the mechanisms behind the delay is provided.


2019 ◽  
Vol 85 (15) ◽  
Author(s):  
Jiangsheng Zhou ◽  
Liqin Kang ◽  
Cuicui Liu ◽  
Xin Niu ◽  
Xiaojun Wang ◽  
...  

ABSTRACT The elongation growth of the mushroom stipe is a characteristic but not well-understood morphogenetic event of basidiomycetes. We found that extending native stipe cell walls of Coprinopsis cinerea were associated with the release of N-acetylglucosamine and chitinbiose and with chitinase activity. Two chitinases among all detected chitinases from C. cinerea, ChiE1 and ChiIII, reconstituted heat-inactivated stipe wall extension and released N-acetylglucosamine and chitinbiose. Interestingly, both ChiE1 and ChiIII hydrolyze insoluble crystalline chitin powder, while other C. cinerea chitinases do not, suggesting that crystalline chitin components of the stipe cell wall are the target of action for ChiE1 and ChiIII. ChiE1- or ChiIII-reconstituted heat-inactivated stipe walls showed maximal extension activity at pH 4.5, consistent with the optimal pH for native stipe wall extension in vitro; ChiE1- or ChiIII-reconstituted heat-inactivated stipe wall extension activities were associated with stipe elongation growth regions; and the combination of ChiE1 and ChiIII showed a synergism to reconstitute heat-inactivated stipe wall extension at a low action concentration. Field emission scanning electron microscopy (FESEM) images showed that the inner surface of acid-induced extended native stipe cell walls and ChiE1- or ChiIII-reconstituted extended heat-inactivated stipe cell walls exhibited a partially broken parallel microfibril architecture; however, these broken transversely arranged microfibrils were not observed in the unextended stipe cell walls that were induced by neutral pH buffer or heat inactivation. Double knockdown of ChiE1 and ChiIII resulted in the reduction of stipe elongation, mycelium growth, and heat-sensitive cell wall extension of native stipes. These results indicate a chitinase-hydrolyzing mechanism for stipe cell wall extension. IMPORTANCE A remarkable feature in the development of basidiomycete fruiting bodies is stipe elongation growth that results primarily from manifold cell elongation. Some scientists have suggested that stipe elongation is the result of enzymatic hydrolysis of cell wall polysaccharides, while other scientists have proposed the possibility that stipe elongation results from nonhydrolytic disruption of the hydrogen bonds between cell wall polysaccharides. Here, we show direct evidence for a chitinase-hydrolyzing mechanism of stipe cell wall elongation in the model mushroom Coprinopsis cinerea that is different from the expansin nonhydrolysis mechanism of plant cell wall extension. We presumed that in the growing stipe cell walls, parallel chitin microfibrils are tethered by β-1,6-branched β-1,3-glucans, and that the breaking of the tether by chitinases leads to separation of these microfibrils to increase their spacing for insertion of new synthesized chitin and β-1,3-glucans under turgor pressure in vivo.


2017 ◽  
Vol 86 (3) ◽  
Author(s):  
Susan L. Brockmeier ◽  
Crystal L. Loving ◽  
Tracy L. Nicholson ◽  
Jinhong Wang ◽  
Sarah E. Peters ◽  
...  

ABSTRACT Streptococcus suis is a bacterium that is commonly carried in the respiratory tract and that is also one of the most important invasive pathogens of swine, commonly causing meningitis, arthritis, and septicemia. Due to the existence of many serotypes and a wide range of immune evasion capabilities, efficacious vaccines are not readily available. The selection of S. suis protein candidates for inclusion in a vaccine was accomplished by identifying fitness genes through a functional genomics screen and selecting conserved predicted surface-associated proteins. Five candidate proteins were selected for evaluation in a vaccine trial and administered both intranasally and intramuscularly with one of two different adjuvant formulations. Clinical protection was evaluated by subsequent intranasal challenge with virulent S. suis . While subunit vaccination with the S. suis proteins induced IgG antibodies to each individual protein and a cellular immune response to the pool of proteins and provided substantial protection from challenge with virulent S. suis , the immune response elicited and the degree of protection were dependent on the parenteral adjuvant given. Subunit vaccination induced IgG reactive against different S. suis serotypes, indicating a potential for cross protection.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1263
Author(s):  
David Stuart Thompson ◽  
Azharul Islam

The extensibility of synthetic polymers is routinely modulated by the addition of lower molecular weight spacing molecules known as plasticizers, and there is some evidence that water may have similar effects on plant cell walls. Furthermore, it appears that changes in wall hydration could affect wall behavior to a degree that seems likely to have physiological consequences at water potentials that many plants would experience under field conditions. Osmotica large enough to be excluded from plant cell walls and bacterial cellulose composites with other cell wall polysaccharides were used to alter their water content and to demonstrate that the relationship between water potential and degree of hydration of these materials is affected by their composition. Additionally, it was found that expansins facilitate rehydration of bacterial cellulose and cellulose composites and cause swelling of plant cell wall fragments in suspension and that these responses are also affected by polysaccharide composition. Given these observations, it seems probable that plant environmental responses include measures to regulate cell wall water content or mitigate the consequences of changes in wall hydration and that it may be possible to exploit such mechanisms to improve crop resilience.


2021 ◽  
Vol 22 (6) ◽  
pp. 3077
Author(s):  
Zhenzhen Hao ◽  
Xiaolu Wang ◽  
Haomeng Yang ◽  
Tao Tu ◽  
Jie Zhang ◽  
...  

Plant cell wall polysaccharides (PCWP) are abundantly present in the food of humans and feed of livestock. Mammalians by themselves cannot degrade PCWP but rather depend on microbes resident in the gut intestine for deconstruction. The dominant Bacteroidetes in the gut microbial community are such bacteria with PCWP-degrading ability. The polysaccharide utilization systems (PUL) responsible for PCWP degradation and utilization are a prominent feature of Bacteroidetes. In recent years, there have been tremendous efforts in elucidating how PULs assist Bacteroidetes to assimilate carbon and acquire energy from PCWP. Here, we will review the PUL-mediated plant cell wall polysaccharides utilization in the gut Bacteroidetes focusing on cellulose, xylan, mannan, and pectin utilization and discuss how the mechanisms can be exploited to modulate the gut microbiota.


Sign in / Sign up

Export Citation Format

Share Document