scholarly journals Genetic Diversity of Flavescence Dorée Phytoplasmas at the Vineyard Scale

2019 ◽  
Vol 85 (10) ◽  
Author(s):  
Marika Rossi ◽  
Mattia Pegoraro ◽  
Matteo Ripamonti ◽  
Simona Abbà ◽  
Dylan Beal ◽  
...  

ABSTRACT To study the role of wild areas around the vineyards in the epidemiology of flavescence dorée (FD) and track the origin of new foci, two phytoplasma genetic markers, dnaK and malG, were developed for FD phytoplasma (FDp) characterization. The two genes and the vmpA locus were used to genetically characterize FDp populations at seven agroecosystems of a wine-growing Italian region. Vitis vinifera, “gone-wild” V. vinifera and rootstocks, Clematis spp., and Scaphoideus titanus adults were sampled within and outside the vineyards. A range of genotypes infecting the different hosts of the FDp epidemiological cycle was found. Type FD-C isolates were fairly homogeneous compared to type FD-D ones. Most of the FD-D variability was correlated with the malG sequence, and a duplication of this locus was demonstrated for this strain. Coinfection with FD-C and FD-D strains was rare, suggesting possible competition between the two. Similar levels of FDp genetic variation recorded for grapevines or leafhoppers of cultivated and wild areas and co-occurrence of many FDp genotypes inside and outside the vineyards supported the idea of the importance of wild or abandoned Vitis plants and associated S. titanus insects in the epidemiology of the disease. Genetic profiles of FDp found in Clematis were never found in the other hosts, indicating that this species does not take part in the disease cycle in the area. Due to the robustness of analyses using dnaK for discriminating between FD-C and FD-D strains and the high variability of malG sequences, these are efficient markers to study FDp populations and epidemiology at a small geographical scale. IMPORTANCE Flavescence dorée, a threatening disease of grapevine caused by FD phytoplasma (FDp), is distributed within the most important wine-producing areas of Europe and has severe effects on both vineyard productivity and landscape management. FDp is a quarantine pest in Europe, and despite the efforts to contain the pathogen, the disease is still spreading. In this work, new genetic markers for the fine genetic characterization of FDp at local scale are presented. Our findings improve the knowledge of FDp epidemiological cycle and offer the possibility of tracking the route of the FDp infection. In particular, due to its high genetic variability, one of the newly developed markers could be sufficient to track the origin of new infection foci, either from the wild areas or from nurseries.

2015 ◽  
Vol 59 (9) ◽  
pp. 5357-5365 ◽  
Author(s):  
Hilde Smith ◽  
Alex Bossers ◽  
Frank Harders ◽  
Guanghui Wu ◽  
Neil Woodford ◽  
...  

ABSTRACTThe aim of the study was to identify the plasmid-encoded factors contributing to the emergence and spread of epidemic IncI1-Iγ plasmids obtained fromEscherichia coliandSalmonella entericaisolates from animal and human reservoirs. For this, 251 IncI1-Iγ plasmids carrying various extended-spectrum β-lactamase (ESBL) or AmpC β-lactamase genes were compared using plasmid multilocus sequence typing (pMLST). Thirty-two of these plasmids belonging to different pMLST types were sequenced using Roche 454 and Illumina platforms. Epidemic IncI1-Iγ plasmids could be assigned to various dominant clades, whereas rarely detected plasmids clustered together as a distinct clade. Similar phylogenetic trees were obtained using only the plasmid backbone sequences, showing that the differences observed between the plasmids belonging to distinct clades resulted mainly from differences between their backbone sequences. Plasmids belonging to the various clades differed particularly in the presence/absence of genes encoding partitioning and addiction systems, which contribute to stable inheritance during cell division and plasmid maintenance. Despite this, plasmids belonging to the various phylogenetic clades also showed marked resistance gene associations, indicating the circulation of successful plasmid-gene combinations. The variation intraYandexcAgenes found in IncI1-Iγ plasmids is conserved within pMLST sequence types and plays a role in incompatibility, although functional study is needed to elucidate the role of these genes in plasmid epidemiology.


2012 ◽  
Vol 78 (19) ◽  
pp. 6799-6803 ◽  
Author(s):  
Sam Abraham ◽  
David M. Gordon ◽  
James Chin ◽  
Huub J. M. Brouwers ◽  
Peter Njuguna ◽  
...  

ABSTRACTThe role ofEscherichia colias a pathogen has been the focus of considerable study, while much less is known about it as a commensal and how it adapts to and colonizes different environmental niches within the mammalian gut. In this study, we characterizeEscherichia coliorganisms (n= 146) isolated from different regions of the intestinal tracts of eight pigs (dueodenum, ileum, colon, and feces). The isolates were typed using the method of random amplified polymorphic DNA (RAPD) and screened for the presence of bacteriocin genes and plasmid replicon types. Molecular analysis of variance using the RAPD data showed thatE. coliisolates are nonrandomly distributed among different gut regions, and that gut region accounted for 25% (P< 0.001) of the observed variation among strains. Bacteriocin screening revealed that a bacteriocin gene was detected in 45% of the isolates, with 43% carrying colicin genes and 3% carrying microcin genes. Of the bacteriocins observed (H47, E3, E1, E2, E7, Ia/Ib, and B/M), the frequency with which they were detected varied with respect to gut region for the colicins E2, E7, Ia/Ib, and B/M. The plasmid replicon typing gave rise to 25 profiles from the 13 Inc types detected. Inc F types were detected most frequently, followed by Inc HI1 and N types. Of the Inc types detected, 7 were nonrandomly distributed among isolates from the different regions of the gut. The results of this study indicate that not only may the different regions of the gastrointestinal tract harbor different strains ofE. colibut also that strains from different regions have different characteristics.


2015 ◽  
Vol 43 (9) ◽  
pp. S73
Author(s):  
Ayana Kon ◽  
Satoshi Yamazaki ◽  
Keisuke Kataoka ◽  
Tetsuichi Yoshizato ◽  
Yusuke Shiozawa ◽  
...  

2020 ◽  
Vol 202 (12) ◽  
Author(s):  
María Pérez-Varela ◽  
Aimee R. P. Tierney ◽  
Ju-Sim Kim ◽  
Andrés Vázquez-Torres ◽  
Philip Rather

ABSTRACT In response to nutrient depletion, the RelA and SpoT proteins generate the signaling molecule (p)ppGpp, which then controls a number of downstream effectors to modulate cell physiology. In Acinetobacter baumannii strain AB5075, a relA ortholog (ABUW_3302) was identified by a transposon insertion that conferred an unusual colony phenotype. An in-frame deletion in relA (ΔrelA) failed to produce detectable levels of ppGpp when amino acid starvation was induced with serine hydroxamate. The ΔrelA mutant was blocked from switching from the virulent opaque colony variant (VIR-O) to the avirulent translucent colony variant (AV-T), but the rate of AV-T to VIR-O switching was unchanged. In addition, the ΔrelA mutation resulted in a pronounced hypermotile phenotype on 0.35% agar plates. This hypermotility was dependent on the activation of a LysR regulator ABUW_1132, which was required for expression of AbaR, a LuxR family quorum-sensing regulator. In the ΔrelA mutant, ABUW_1132 was also required for the increased expression of an operon composed of the ABUW_3766-ABUW_3773 genes required for production of the surfactant-like lipopeptide acinetin 505. Additional phenotypes identified in the ΔrelA mutant included (i) cell elongation at high density, (ii) reduced formation of persister cells tolerant to colistin and rifampin, and (iii) decreased virulence in a Galleria mellonella model. IMPORTANCE Acinetobacter baumannii is a pathogen of worldwide importance. Due to the increasing prevalence of antibiotic resistance, these infections are becoming increasingly difficult to treat. New therapies are required to combat multidrug-resistant isolates. The role of RelA in A. baumannii is largely unknown. This study demonstrates that like in other bacteria, RelA controls a variety of functions, including virulence. Strategies to inhibit the activity of RelA and the resulting production of ppGpp could inhibit virulence and may represent a new therapeutic approach.


2019 ◽  
Vol 20 (9) ◽  
pp. 2286 ◽  
Author(s):  
Manu Kumar ◽  
Dung Thi Le ◽  
Seongbin Hwang ◽  
Pil Joon Seo ◽  
Hyun Uk Kim

The INDETERMINATE DOMAIN (IDD) genes comprise a conserved transcription factor family that regulates a variety of developmental and physiological processes in plants. Many recent studies have focused on the genetic characterization of IDD family members and revealed various biological functions, including modulation of sugar metabolism and floral transition, cold stress response, seed development, plant architecture, regulation of hormone signaling, and ammonium metabolism. In this review, we summarize the functions and working mechanisms of the IDD gene family in the regulatory network of metabolism and developmental processes.


2000 ◽  
Vol 125 (2) ◽  
pp. 285-298 ◽  
Author(s):  
J. JELFS ◽  
R. MUNRO ◽  
F. E. ASHTON ◽  
D. A. CAUGANT

A new variant within the electrophoretic type (ET)-37 complex of Neisseria meningitidis, ET-15, first detected in Canada in 1986, has been associated with severe clinical infections and high mortality rates in several European countries, Israel and Australia. To ascertain the genetic and epidemiological relationships of ET-15 strains from different geographical areas, 72 ET-15 isolates from 10 countries were compared to 13 isolates representing other clones of the ET-37 complex. The 85 strains were analysed by pulsed-field gel electrophoresis (PFGE) using 2 restriction endonucleases and Southern hybridization with 10 genetic markers. Four ET-15 strains and 4 other strains of the ET-37 complex were further examined using an additional restriction enzyme and a total of 18 genetic markers. PFGE fingerprints of the ET-15 strains were closely related. Strains within each country were even more closely related, suggesting single introductions of the clone. Physical mapping of genes in ET-15 and other strains of the ET-37 complex demonstrated that large genetic rearrangements of the genome have occurred in association with the appearance of the ET-15 variant.


2015 ◽  
Vol 59 (8) ◽  
pp. 4669-4679 ◽  
Author(s):  
Nilmar Silvio Moretti ◽  
Leonardo da Silva Augusto ◽  
Tatiana Mordente Clemente ◽  
Raysa Paes Pinto Antunes ◽  
Nobuko Yoshida ◽  
...  

ABSTRACTAcetylation of lysine is a major posttranslational modification of proteins and is catalyzed by lysine acetyltransferases, while lysine deacetylases remove acetyl groups. Among the deacetylases, the sirtuins are NAD+-dependent enzymes, which modulate gene silencing, DNA damage repair, and several metabolic processes. As sirtuin-specific inhibitors have been proposed as drugs for inhibiting the proliferation of tumor cells, in this study, we investigated the role of these inhibitors in the growth and differentiation ofTrypanosoma cruzi, the agent of Chagas disease. We found that the use of salermide during parasite infection prevented growth and initial multiplication after mammalian cell invasion byT. cruziat concentrations that did not affect host cell viability. In addition,in vivoinfection was partially controlled upon administration of salermide. There are two sirtuins inT. cruzi, TcSir2rp1 and TcSir2rp3. By using specific antibodies and cell lines overexpressing the tagged versions of these enzymes, we found that TcSir2rp1 is localized in the cytosol and TcSir2rp3 in the mitochondrion. TcSir2rp1 overexpression acts to impair parasite growth and differentiation, whereas the wild-type version of TcSir2rp3 and not an enzyme mutated in the active site improves both. The effects observed with TcSir2rp3 were fully reverted by adding salermide, which inhibited TcSir2rp3 expressed inEscherichia coliwith a 50% inhibitory concentration (IC50) ± standard error of 1 ± 0.5 μM. We concluded that sirtuin inhibitors targeting TcSir2rp3 could be used in Chagas disease chemotherapy.


2013 ◽  
Vol 13 (4) ◽  
pp. 438-451 ◽  
Author(s):  
Srisuda Pannanusorn ◽  
Bernardo Ramírez-Zavala ◽  
Heinrich Lünsdorf ◽  
Birgitta Agerberth ◽  
Joachim Morschhäuser ◽  
...  

ABSTRACT In Candida parapsilosis , biofilm formation is considered to be a major virulence factor. Previously, we determined the ability of 33 clinical isolates causing bloodstream infection to form biofilms and identified three distinct groups of biofilm-forming strains (negative, low, and high). Here, we establish two different biofilm structures among strains forming large amounts of biofilm in which strains with complex spider-like structures formed robust biofilms on different surface materials with increased resistance to fluconazole. Surprisingly, the transcription factor Bcr1, required for biofilm formation in Candida albicans and C. parapsilosis , has an essential role only in strains with low capacity for biofilm formation. Although BCR1 leads to the formation of more and longer pseudohyphae, it was not required for initial adhesion and formation of mature biofilms in strains with a high level of biofilm formation. Furthermore, an additional phenotype affected by BCR1 was the switch in colony morphology from rough to crepe, but only in strains forming high levels of biofilm. All bcr1 Δ/Δ mutants showed increased proteolytic activity and increased susceptibility to the antimicrobial peptides protamine and RP-1 compared to corresponding wild-type and complemented strains. Taken together, our results demonstrate that biofilm formation in clinical isolates of C. parapsilosis is both dependent and independent of BCR1 , but even in strains which showed a BCR1 -independent biofilm phenotype, BCR1 has alternative physiological functions.


2018 ◽  
Vol 200 (18) ◽  
Author(s):  
James A. Budnick ◽  
Lauren M. Sheehan ◽  
Lin Kang ◽  
Pawel Michalak ◽  
Clayton C. Caswell

ABSTRACTElucidating the function of proteins <50 amino acids in length is no small task. Nevertheless, small proteins can play vital roles in the lifestyle of bacteria and influence the virulence of pathogens; thus, the investigation of the small proteome is warranted. Recently, our group identified theBrucella abortusprotein VtlR as a transcriptional activator of four genes, one of which is the well-studied small regulatory RNA AbcR2, while the other three genes encode hypothetical small proteins, two of which are highly conserved among the orderRhizobiales. This study provides evidence that all three genes encode authentic small proteins and that all three are highly expressed under oxidative stress, low-pH, and stationary-phase growth conditions. Fractionation of the cells revealed that the proteins are localized to the membranes ofB. abortus. We demonstrate that the small proteins under the transcriptional control of VtlR are not accountable for attenuation observed with theB. abortusvtlRdeletion strain. However, there is an association between VtlR-regulated genes and growth inhibition in the presence of the sugarl-fucose. Subsequent transcriptomic analyses revealed thatB. abortusinitiates the transcription of a locus encoding a putative sugar transport and utilization system when the bacteria are cultured in the presence ofl-fucose. Altogether, our observations characterize the role of the VtlR-controlled small proteins BAB1_0914, BAB2_0512, and BAB2_0574 in the biology ofB. abortus, particularly in the capacity of the bacteria to utilizel-fucose.IMPORTANCEDespite being one of the most common zoonoses worldwide, there is currently no human vaccine to combat brucellosis. Therefore, a better understanding of the pathogenesis and biology ofBrucellaspp., the causative agent of brucellosis, is essential for the discovery of novel therapeutics against these highly infectious bacteria. In this study, we further characterize the virulence-associated transcriptional regulator VtlR inBrucella abortus. Our findings not only shed light on our current understanding of a virulence related genetic system inBrucellaspp. but also increase our knowledge of small proteins in the field of bacteriology.


Sign in / Sign up

Export Citation Format

Share Document