scholarly journals Development of a Rapid, Sensitive, and Field-Deployable Razor Ex BioDetection System and Quantitative PCR Assay for Detection of Phymatotrichopsis omnivora Using Multiple Gene Targets

2013 ◽  
Vol 79 (7) ◽  
pp. 2312-2320 ◽  
Author(s):  
M. Arif ◽  
J. Fletcher ◽  
S. M. Marek ◽  
U. Melcher ◽  
F. M. Ochoa-Corona

ABSTRACTA validated, multigene-based method using real-time quantitative PCR (qPCR) and the Razor Ex BioDetection system was developed for detection ofPhymatotrichopsis omnivora.This soilborne fungus causes Phymatotrichopsis root rot of cotton, alfalfa, and other dicot crops in the southwestern United States and northern Mexico, leading to significant crop losses and limiting the range of crops that can be grown in soils where the fungus is established. It is on multiple lists of regulated organisms. BecauseP. omnivorais difficult to isolate, accurate and sensitive culture-independent diagnostic tools are needed to confirm infections by this fungus. Specific PCR primers and probes were designed based onP. omnivoranucleotide sequences of the genes encoding rRNA internal transcribed spacers, beta-tubulin, and the second-largest subunit of RNA polymerase II (RPB2). PCR products were cloned and sequenced to confirm their identity. All primer sets allowed early detection ofP. omnivorain infected but asymptomatic plants. A modified rapid DNA purification method, which facilitates a quick (∼30-min) on-site assay capability forP. omnivoradetection, was developed. Combined use of three target genes increased the assay accuracy and broadened the range of detection. To our knowledge, this is the first report of a multigene-based, field-deployable, rapid, and reliable identification method for a fungal plant pathogen and should serve as a model for the development of field-deployable assays of other phytopathogens.

2015 ◽  
Vol 81 (24) ◽  
pp. 8307-8314 ◽  
Author(s):  
Hayley Thompson ◽  
Alexandra Rybalka ◽  
Rebecca Moazzez ◽  
Floyd E. Dewhirst ◽  
William G. Wade

ABSTRACTAround a third of oral bacteria cannot be grown using conventional bacteriological culture media. Community profiling targeting 16S rRNA and shotgun metagenomics methods have proved valuable in revealing the complexity of the oral bacterial community. Studies investigating the role of oral bacteria in health and disease require phenotypic characterizations that are possible only with live cultures. The aim of this study was to develop novel culture media and use anin vitrobiofilm model to culture previously uncultured oral bacteria. Subgingival plaque samples collected from subjects with periodontitis were cultured on complex mucin-containing agar plates supplemented with proteose peptone (PPA), beef extract (BEA), or Gelysate (GA) as well as on fastidious anaerobe agar plus 5% horse blood (FAA).In vitrobiofilms inoculated with the subgingival plaque samples and proteose peptone broth (PPB) as the growth medium were established using the Calgary biofilm device. Specific PCR primers were designed and validated for the previously uncultivated oral taxaBacteroidetesbacteria HOT 365 and HOT 281,Lachnospiraceaebacteria HOT 100 and HOT 500, andClostridialesbacterium HOT 093. All agar media were able to support the growth of 10 reference strains of oral bacteria. One previously uncultivated phylotype,Actinomycessp. HOT 525, was cultivated on FAA. Of 93 previously uncultivated phylotypes found in the inocula, 26 were detected inin vitro-cultivated biofilms.Lachnospiraceaebacterium HOT 500 was successfully cultured from biofilm material harvested from PPA plates in coculture withParvimonas micraorVeillonella dispar/parvulaafter colony hybridization-directed enrichment. The establishment ofin vitrobiofilms from oral inocula enables the cultivation of previously uncultured oral bacteria and provides source material for isolation in coculture.


2006 ◽  
Vol 74 (8) ◽  
pp. 4519-4529 ◽  
Author(s):  
Kelley M. Hovis ◽  
Martin E. Schriefer ◽  
Sonia Bahlani ◽  
Richard T. Marconi

ABSTRACT It has been demonstrated that Borrelia hermsii, a causative agent of relapsing fever, produces a factor H (FH) and FH-like protein 1 (FHL-1) binding protein. The binding protein has been designated FhbA. To determine if FH/FHL-1 binding is widespread among B. hermsii isolates, a diverse panel of strains was tested for the FH/FHL-1 binding phenotype and FhbA production. Most isolates (23/24) produced FhbA and bound FH/FHL-1. Potential variation in FhbA among isolates was analyzed by DNA sequence analyses. Two genetically distinct FhbA types, designated fhbA1 and fhbA2, were delineated, and type-specific PCR primers were generated to allow for rapid differentiation. Pulsed-field gel electrophoresis and hybridization analyses demonstrated that all isolates that possess the gene carry it on a 200-kb linear plasmid (lp200), whereas isolates that lack the gene lack lp200 and instead carry an lp170. To determine if FhbA is antigenic during infection and to assess the specificity of the response, recombinant FhbA1 (rFhbA1) and rFhbA2 were screened with serum from infected mice and humans. FhbA was found to be expressed and antigenic and to elicit a potentially type-specific FhbA response. To localize the epitopes of FhbA1 and FhbA2, truncations were generated and screened with infection serum. The epitopes were determined to be conformationally defined. Collectively, these analyses indicate that FH/FHL-1 binding is a widespread virulence mechanism for B. hermsii and provide insight into the genetic and antigenic structure of FhbA. The data also have potential implications for understanding the epidemiology of relapsing fever in North America and can be applied to the future development of species-specific diagnostic tools.


2016 ◽  
Vol 36 (14) ◽  
pp. 1943-1960 ◽  
Author(s):  
Jayamani Anandhakumar ◽  
Yara W. Moustafa ◽  
Surabhi Chowdhary ◽  
Amoldeep S. Kainth ◽  
David S. Gross

Mediator is an evolutionarily conserved coactivator complex essential for RNA polymerase II transcription. Although it has been generally assumed that inSaccharomyces cerevisiae, Mediator is a stable trimodular complex, its structural statein vivoremains unclear. Using the “anchor away” (AA) technique to conditionally deplete select subunits within Mediator and its reversibly associated Cdk8 kinase module (CKM), we provide evidence that Mediator's tail module is highly dynamic and that a subcomplex consisting of Med2, Med3, and Med15 can be independently recruited to the regulatory regions of heat shock factor 1 (Hsf1)-activated genes. Fluorescence microscopy of a scaffold subunit (Med14)-anchored strain confirmed parallel cytoplasmic sequestration of core subunits located outside the tail triad. In addition, and contrary to current models, we provide evidence that Hsf1 can recruit the CKM independently of core Mediator and that core Mediator has a role in regulating postinitiation events. Collectively, our results suggest that yeast Mediator is not monolithic but potentially has a dynamic complexity heretofore unappreciated. Multiple species, including CKM-Mediator, the 21-subunit core complex, the Med2-Med3-Med15 tail triad, and the four-subunit CKM, can be independently recruited by activated Hsf1 to its target genes in AA strains.


2015 ◽  
Vol 53 (6) ◽  
pp. 1891-1897 ◽  
Author(s):  
C. R. Stensvold ◽  
K. Elwin ◽  
J. Winiecka-Krusnell ◽  
R. M. Chalmers ◽  
L. Xiao ◽  
...  

The apicomplexan intestinal parasites of the genusCryptosporidiumtake a major toll on human and animal health and are frequent causes of waterborne outbreaks. Several species and genotypes can infect humans, includingCryptosporidium viatorum, which, to date, has only been found in humans. Molecular characterization ofCryptosporidiumspp., critical to epidemiological analyses, is commonly based on gp60 gene analysis, which appears to require bespoke species- or group-specific PCR primers due to extensive genetic diversity across the genus. In this study, we amplified, sequenced, and characterized the gp60 gene ofC. viatorumfor the first time. Moreover, we developed and validated a gp60 typing assay for this species and applied it to 27 isolates originating from Asia, Africa, and Central America. A single subtype family, XVa, was identified containing multiple alleles.


Cells ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1465 ◽  
Author(s):  
Christiaan J. Stavast ◽  
Stefan J. Erkeland

MicroRNAs (miRNAs) are critical regulators of gene expression. As miRNAs are frequently deregulated in many human diseases, including cancer and immunological disorders, it is important to understand their biological functions. Typically, miRNA-encoding genes are transcribed by RNA Polymerase II and generate primary transcripts that are processed by RNase III-endonucleases DROSHA and DICER into small RNAs of approximately 21 nucleotides. All miRNAs are loaded into Argonaute proteins in the RNA-induced silencing complex (RISC) and act as post-transcriptional regulators by binding to the 3′- untranslated region (UTR) of mRNAs. This seed-dependent miRNA binding inhibits the translation and/or promotes the degradation of mRNA targets. Surprisingly, recent data presents evidence for a target-mediated decay mechanism that controls the level of specific miRNAs. In addition, several non-canonical miRNA-containing genes have been recently described and unexpected functions of miRNAs have been identified. For instance, several miRNAs are located in the nucleus, where they are involved in the transcriptional activation or silencing of target genes. These epigenetic modifiers are recruited by RISC and guided by miRNAs to specific loci in the genome. Here, we will review non-canonical aspects of miRNA biology, including novel regulators of miRNA expression and functions of miRNAs in the nucleus.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1489
Author(s):  
Tammy Stackhouse ◽  
Sumyya Waliullah ◽  
Alfredo D. Martinez-Espinoza ◽  
Bochra Bahri ◽  
Emran Ali

Dollar spot is one of the most destructive diseases in turfgrass. The causal agents belong to the genus Clarireedia, which are known for causing necrotic, sunken spots in turfgrass that coalesce into large damaged areas. In low tolerance settings like turfgrass, it is of vital importance to rapidly detect and identify the pathogens. There are a few methods available to identify the genus Clarireedia, but none of those are rapid enough and characterize down to the species level. This study produced a co-dominant cleaved amplified polymorphic sequences (CAPS) test that differentiates between C. jacksonii and C. monteithiana, the two species that cause dollar spot disease within the United States. The calmodulin gene (CaM) was targeted to generate Clarireedia spp. specific PCR primers. The CAPS assay was optimized and tested for specificity and sensitivity using DNA extracted from pure cultures of two Clarireedia spp. and other closely related fungal species. The results showed that the newly developed primer set could amplify both species and was highly sensitive as it detected DNA concentrations as low as 0.005 ng/µL. The assay was further validated using direct PCR to speed up the diagnosis process. This drastically reduces the time needed to identify the dollar spot pathogens. The resulting assay could be used throughout turfgrass settings for a rapid and precise identification method in the US.


2008 ◽  
Vol 74 (6) ◽  
pp. 1740-1747 ◽  
Author(s):  
Andrew Dopheide ◽  
Gavin Lear ◽  
Rebecca Stott ◽  
Gillian Lewis

ABSTRACT Free-living protozoa are thought to be of fundamental importance in aquatic ecosystems, but there is limited understanding of their diversity and ecological role, particularly in surface-associated communities such as biofilms. Existing eukaryote-specific PCR primers were used to survey 18S rRNA gene sequence diversity in stream biofilms but poorly revealed protozoan diversity, demonstrating a need for protozoan-targeted primers. Group-specific PCR primers targeting 18S rRNA genes of the protozoan phylum Ciliophora were therefore designed and tested using DNA extracted from cultured protozoan isolates. The two most reliable primer combinations were applied to stream biofilm DNA, followed by cloning and sequencing analysis. Of 44 clones derived from primer set 384F/1147R, 86% were of probable ciliate origin, as were 25% of 44 clones detected by primer set 121F/1147R. A further 29% of 121F/1147R-detected clones matched sequences from the closely related phylum Apicomplexa. The highly ciliate-specific primer set 384F/1147R was subsequently used in PCRs on biofilm DNA from four streams exhibiting different levels of human impact, revealing differences in ciliate sequence diversity in samples from each site. Of a total of 240 clones, 73% were of probable ciliate origin; 54 different putative ciliate sequences were detected from throughout seven taxonomic ciliate classes. Sequences from Oligohymenophorea were most commonly detected in all samples, followed by either Spirotrichea or Phyllopharyngea. Restriction fragment length polymorphism profile-based analysis of clones suggested a potentially higher level of diversity than did sequencing. Nevertheless, newly designed PCR primers 384F/1147R were considered to provide an effective molecular basis for characterization of ciliate diversity in stream biofilms.


Sign in / Sign up

Export Citation Format

Share Document