scholarly journals Intestinal Microbiota and Species Diversity ofCampylobacterandHelicobacterspp. in Migrating Shorebirds in Delaware Bay

2014 ◽  
Vol 80 (6) ◽  
pp. 1838-1847 ◽  
Author(s):  
Hodon Ryu ◽  
Kirsten Grond ◽  
Bram Verheijen ◽  
Michael Elk ◽  
Deborah M. Buehler ◽  
...  

ABSTRACTUsing 16S rRNA gene sequencing analysis, we examined the bacterial diversity and the presence of opportunistic bacterial pathogens (i.e.,CampylobacterandHelicobacter) in red knot (Calidris canutus;n= 40), ruddy turnstone (Arenaria interpres;n= 35), and semipalmated sandpiper (Calidris pusilla;n= 22) fecal samples collected during a migratory stopover in Delaware Bay. Additionally, we studied the occurrence ofCampylobacterspp., enterococci, and waterfowl fecal source markers using quantitative PCR (qPCR) assays. Of 3,889 16S rRNA clone sequences analyzed, the bacterial community was mostly composed ofBacilli(63.5%),Fusobacteria(12.7%),Epsilonproteobacteria(6.5%), andClostridia(5.8%). When epsilonproteobacterium-specific 23S rRNA gene clone libraries (i.e., 1,414 sequences) were analyzed, the sequences were identified asCampylobacter(82.3%) orHelicobacter(17.7%) spp. Specifically, 38.4%, 10.1%, and 26.0% of clone sequences were identified asC. lari(>99% sequence identity) in ruddy turnstone, red knot, and semipalmated sandpiper clone libraries, respectively. Other pathogenic species ofCampylobacter, such asC. jejuniandC. coli, were not detected in excreta of any of the three bird species. MostHelicobacter-like sequences identified were closely related toH. pametensis(>99% sequence identity) andH. anseris(92% sequence identity). qPCR results showed that the occurrence and abundance ofCampylobacterspp. was relatively high compared to those of fecal indicator bacteria, such asEnterococcusspp.,E. faecalis, andCatellicoccus marimammalium. Overall, the results provide insights into the complexity of the shorebird gut microbial community and suggest that these migratory birds are important reservoirs of pathogenicCampylobacterspecies.

2013 ◽  
Vol 62 (4) ◽  
pp. 351-358
Author(s):  
Xueling Wu ◽  
Hong Duan ◽  
Hongwei Fan ◽  
Zhenzhen Zhang ◽  
Lili Liu

Comparative study of the genetic characteristics among three Acidithiobacillus caldus strains isolated from different typical environments in China was performed using a combination of molecular methods, namely sequencing analysis of PCR-amplified 16S rRNA genes and 16S-23S rRNA gene intergenic spacers (ITS), repetitive element PCR (rep-PCR), arbitrarily primed PCR (AP-PCR) fingerprinting and random amplified polymorphic DNA (RAPD). Both of the 16S rRNA gene and 16S-23S rRNA gene intergenic spacers sequences of the three strains exhibited small variations, with 99.9-100%, 99.7-100% identity respectively. In contrast, according to the analysis of bacterial diversity based on rep-PCR and AP-PCR fingerprinting, they produced highly discriminatory banding patterns, and the similarity values between them varied from 61.97% to 71.64%. RAPD analysis showed that banding profiles of their genomic DNA exhibited obvious differences from each other with 53.44-75% similarity. These results suggested that in contrast to 16S rRNA genes and 16S-23S rRNA gene intergenic spacers sequencing analysis, rep-PCR, AP-PCR fingerprinting and RAPD analysis possessed higher discriminatory power in identifying these closely related strains. And they could be used as rapid and highly discriminatory typing techniques in studying bacterial diversity, especially in differentiating bacteria within Acidithiobacillus caldus.


2021 ◽  
Vol 9 (8) ◽  
pp. 1570
Author(s):  
Chien-Hsun Huang ◽  
Chih-Chieh Chen ◽  
Yu-Chun Lin ◽  
Chia-Hsuan Chen ◽  
Ai-Yun Lee ◽  
...  

The current taxonomy of the Lactiplantibacillus plantarum group comprises of 17 closely related species that are indistinguishable from each other by using commonly used 16S rRNA gene sequencing. In this study, a whole-genome-based analysis was carried out for exploring the highly distinguished target genes whose interspecific sequence identity is significantly less than those of 16S rRNA or conventional housekeeping genes. In silico analyses of 774 core genes by the cano-wgMLST_BacCompare analytics platform indicated that csbB, morA, murI, mutL, ntpJ, rutB, trmK, ydaF, and yhhX genes were the most promising candidates. Subsequently, the mutL gene was selected, and the discrimination power was further evaluated using Sanger sequencing. Among the type strains, mutL exhibited a clearly superior sequence identity (61.6–85.6%; average: 66.6%) to the 16S rRNA gene (96.7–100%; average: 98.4%) and the conventional phylogenetic marker genes (e.g., dnaJ, dnaK, pheS, recA, and rpoA), respectively, which could be used to separat tested strains into various species clusters. Consequently, species-specific primers were developed for fast and accurate identification of L. pentosus, L. argentoratensis, L. plantarum, and L. paraplantarum. During this study, one strain (BCRC 06B0048, L. pentosus) exhibited not only relatively low mutL sequence identities (97.0%) but also a low digital DNA–DNA hybridization value (78.1%) with the type strain DSM 20314T, signifying that it exhibits potential for reclassification as a novel subspecies. Our data demonstrate that mutL can be a genome-wide target for identifying and classifying the L. plantarum group species and for differentiating novel taxa from known species.


2021 ◽  
Vol 9 (6) ◽  
pp. 1307
Author(s):  
Sebastian Böttger ◽  
Silke Zechel-Gran ◽  
Daniel Schmermund ◽  
Philipp Streckbein ◽  
Jan-Falco Wilbrand ◽  
...  

Severe odontogenic abscesses are regularly caused by bacteria of the physiological oral microbiome. However, the culture of these bacteria is often prone to errors and sometimes does not result in any bacterial growth. Furthermore, various authors found completely different bacterial spectra in odontogenic abscesses. Experimental 16S rRNA gene next-generation sequencing analysis was used to identify the microbiome of the saliva and the pus in patients with a severe odontogenic infection. The microbiome of the saliva and the pus was determined for 50 patients with a severe odontogenic abscess. Perimandibular and submandibular abscesses were the most commonly observed diseases at 15 (30%) patients each. Polymicrobial infections were observed in 48 (96%) cases, while the picture of a mono-infection only occurred twice (4%). On average, 31.44 (±12.09) bacterial genera were detected in the pus and 41.32 (±9.00) in the saliva. In most cases, a predominantly anaerobic bacterial spectrum was found in the pus, while saliva showed a similar oral microbiome to healthy individuals. In the majority of cases, odontogenic infections are polymicrobial. Our results indicate that these are mainly caused by anaerobic bacterial strains and that aerobic and facultative anaerobe bacteria seem to play a more minor role than previously described by other authors. The 16S rRNA gene analysis detects significantly more bacteria than conventional methods and molecular methods should therefore become a part of routine diagnostics in medical microbiology.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Takayuki Matsuoka ◽  
Takuya Shimizu ◽  
Tadanori Minagawa ◽  
Wakiko Hiranuma ◽  
Miki Takeda ◽  
...  

Abstract Background Bacteroides dorei is an anaerobic gram-negative bacterium first described in 2006. Because of the high similarity in mass spectra between B. dorei and Bacteroides vulgatus, discriminating between these species is arduous in clinical practice. In recent decades, 16S rRNA gene sequencing has been a complementary method for distinguishing taxonomically close bacteria, including B. dorei and B. vulgatus, at the genus and species levels. Consequently, B. dorei has been shown to contribute to some diseases, including type 1 autoimmune diabetes mellitus and atherosclerotic diseases. However, there are no reports on invasive infectious diseases caused by B. dorei. This report describes the first case of direct invasion and colonisation of human tissue by B. dorei, thus providing a warning regarding the previously proposed application of B. dorei as a live biotherapeutic for atherosclerotic diseases. Case presentation A 78-year-old Japanese man complained of intermittent chest/back pain and was diagnosed with a mycotic thoracic aortic aneurysm by enhanced computed tomography on admission. Despite strict blood pressure control and empirical antibiotic therapy, the patient’s condition worsened. To prevent aneurysmal rupture and eliminate infectious foci, the patient underwent surgical treatment. The resected specimen was subjected to tissue culture and 16S rRNA gene sequencing analysis to identify pathogenic bacteria. A few days after the surgery, culture and sequencing results revealed that the pathogen was B. dorei/B. vulgatus and B. dorei, respectively. The patient was successfully treated with appropriate antibacterial therapy and after improvement, was transferred to another hospital for rehabilitation on postoperative day 34. There was no recurrence of infection or aneurysm after the patient transfer. Conclusions This report describes the first case of invasive infectious disease caused by B. dorei, casting a shadow over its utilisation as a probiotic for atherosclerotic diseases.


Pathogens ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 377 ◽  
Author(s):  
Giovanni Cilia ◽  
Fabrizio Bertelloni ◽  
Marta Angelini ◽  
Domenico Cerri ◽  
Filippo Fratini

Leptospirosis is a re-emerging, worldwide zoonosis, and wild boar (Sus scrofa) are involved in its epidemiology as the reservoir. The aim of this study was to investigate the prevalence of Leptospira with serological, bacteriological, and molecular assays in wild boar hunted in Tuscany (Italy) during two hunting seasons. In total, 287 specimens of sera, kidneys, and liver were collected to perform microscopic agglutination tests (MATs), isolation, and RealTime PCR to detect pathogenic (lipL32 gene), intermediate (16S rRNA gene), and saprophytic (23S rRNA gene) Leptospira. Within sera, 39 (13.59%) were positive to the MAT, and Australis was the most represented serogroup (4.88%), followed by Pomona (4.18%), and Tarassovi (3.14%). Moreover, four Leptospira cultures were positive, and once isolates were identified, one was identified as L. borgpetersenii serovar Tarassovi, and three as L. interrogans serovar Bratislava. Pathogenic Leptospira DNA were detected in 32 wild boar kidneys (11.15%). The characterization through the amplification of the rrs2 gene highlighted their belonging to L. interrogans (23 kidneys), L. borgpetersenii (four), and L. kirschneri (one), while nine kidneys (3.14%) were positive for intermediate Leptospira, all belonging to L. fainei. The results of this study confirmed the importance of wild boar in the epidemiology of leptospirosis among wildlife in Central Italy.


Plant Disease ◽  
2009 ◽  
Vol 93 (3) ◽  
pp. 208-214 ◽  
Author(s):  
Lia W. Liefting ◽  
Paul W. Sutherland ◽  
Lisa I. Ward ◽  
Kerry L. Paice ◽  
Bevan S. Weir ◽  
...  

A new disease of glasshouse-grown tomato and pepper in New Zealand has resulted in plant decline and yield loss. Affected plants are characterized by spiky, chlorotic apical growth, curling or cupping of the leaves, and overall stunting. Transmission electron microscopy revealed the presence of phloem-limited bacterium-like organisms in symptomatic plants. The strategy used to identify the bacterium involved using specific prokaryote polymerase chain reaction (PCR) primers in combination with universal 16S rRNA primers. Sequence analysis of the 16S rRNA gene, the 16S/23S rRNA spacer region, and the rplKAJL-rpoBC operon revealed that the bacterium shared high identity with ‘Candidatus Liberibacter’ species. Phylogenetic analysis showed that the bacterium is distinct from the three citrus liberibacter species previously described and has been named ‘Candidatus Liberibacter solanacearum’. This is the first report of a liberibacter naturally infecting a host outside the Rutaceae family. A specific PCR primer pair was developed for its detection.


2010 ◽  
Vol 60 (4) ◽  
pp. 963-971 ◽  
Author(s):  
Rafael R. de la Haba ◽  
Cristina Sánchez-Porro ◽  
M. Carmen Márquez ◽  
Antonio Ventosa

We have carried out a polyphasic taxonomic characterization of the type strains of the species with the recently validated name Salinicola socius, together with two species that were phylogenetically closely related, Halomonas salaria and Chromohalobacter salarius. 16S rRNA gene sequence analyses showed that they constituted a coherent cluster, with sequence similarities between 98.7 and 97.7 %. We have determined the almost complete 23S rRNA gene sequences of these three type strains, and the percentage of similarity between them was 99.2–97.6 %. Phylogenetic trees based on the 16S rRNA and 23S rRNA gene sequences, obtained by using three different algorithms, were consistent and showed that these three species constituted a cluster separated from the other species of the genera of the family Halomonadaceae, supporting their placement in a single genus. All three species have ubiquinone 9 as the major respiratory quinone, and showed similar fatty acid and polar lipid profiles. The level of DNA–DNA hybridization between Salinicola socius DSM 19940T, Halomonas salaria DSM 18044T and Chromohalobacter salarius CECT 5903T was 41–21 %, indicating that they are different species of the genus Salinicola. A comparative phenotypic study of these strains following the proposed minimal standards for describing new taxa of the family Halomonadaceae has been carried out. The phenotypic data are consistent with the placement of these three species in a single genus and support their differentiation at the species level. On the basis of these data we have emended the description of the species Salinicola socius and we propose to transfer the species Halomonas salaria and Chromohalobacter salarius to the genus Salinicola, as Salinicola salarius comb. nov. (type strain M27T =KCTC 12664T =DSM 18044T) and Salinicola halophilus nom. nov. (type strain CG4.1T =CECT 5903T =LMG 23626T), respectively.


2012 ◽  
Vol 62 (2) ◽  
pp. 322-329 ◽  
Author(s):  
William J. Wolfgang ◽  
An Coorevits ◽  
Jocelyn A. Cole ◽  
Paul De Vos ◽  
Michelle C. Dickinson ◽  
...  

Twelve independent isolates of a Gram-positive, endospore-forming rod were recovered from clinical specimens in New York State, USA, and from raw milk in Flanders, Belgium. The 16S rRNA gene sequences for all isolates were identical. The closest species with a validly published name, based on 16S rRNA gene sequence, is Sporosarcina koreensis (97.13 % similarity). DNA–DNA hybridization studies demonstrate that the new isolates belong to a species distinct from their nearest phylogenetic neighbours. The partial sequences of the 23S rRNA gene for the novel strains and their nearest neighbours also provide support for the novel species designation. Maximum-likelihood phylogenetic analysis of the 16S rRNA gene sequences confirmed that the new isolates are in the genus Sporosarcina. The predominant menaquinone is MK-7, the peptidoglycan has the type A4α l-Lys–Gly–d-Glu, and the polar lipids consist of diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The predominant fatty acids are iso-C14 : 0, iso-C15 : 0 and anteiso-C15 : 0. In addition, biochemical and morphological analyses support designation of the twelve isolates as representatives of a single new species within the genus Sporosarcina, for which the name Sporosarcina newyorkensis sp. nov. (type strain 6062T  = DSM 23544T  = CCUG 59649T  = LMG 26022T) is proposed.


2011 ◽  
Vol 61 (9) ◽  
pp. 2117-2122 ◽  
Author(s):  
Jintana Kommanee ◽  
Somboon Tanasupawat ◽  
Pattaraporn Yukphan ◽  
Taweesak Malimas ◽  
Yuki Muramatsu ◽  
...  

Three strains, RBY-1T, PHD-1 and PHD-2, were isolated from fruits in Thailand. The strains were Gram-negative, aerobic rods with polar flagella, produced acetic acid from ethanol and did not oxidize acetate or lactate. In phylogenetic trees based on 16S rRNA gene sequences and 16S–23S rRNA gene internal transcribed spacer (ITS) sequences, the strains formed a cluster separate from the type strains of recognized species of the genus Gluconobacter. The calculated 16S rRNA gene sequence and 16S–23S rRNA gene ITS sequence similarities were respectively 97.7–99.7 % and 77.3–98.1 %. DNA G+C contents ranged from 57.2 to 57.6 mol%. The strains showed high DNA–DNA relatedness of 100 % to one another, but low DNA–DNA relatedness of 11–34 % to the tested type strains of recognized Gluconobacter species. Q-10 was the major quinone. On the basis of the genotypic and phenotypic data obtained, the three strains clearly represent a novel species, for which the name Gluconobacter nephelii sp. nov. is proposed. The type strain is RBY-1T ( = BCC 36733T = NBRC 106061T = PCU 318T), whose DNA G+C content is 57.2 mol%.


Sign in / Sign up

Export Citation Format

Share Document