scholarly journals Engineering of a Xylose Metabolic Pathway in Rhodococcus Strains

2012 ◽  
Vol 78 (16) ◽  
pp. 5483-5491 ◽  
Author(s):  
Xiaochao Xiong ◽  
Xi Wang ◽  
Shulin Chen

ABSTRACTThe two metabolically versatile actinobacteriaRhodococcus opacusPD630 andR. jostiiRHA1 can efficiently convert diverse organic substrates into neutral lipids mainly consisting of triacylglycerol (TAG), the precursor of energy-rich hydrocarbon. Neither, however, is able to utilize xylose, the important component present in lignocellulosic biomass, as the carbon source for growth and lipid accumulation. In order to broaden their substrate utilization range, the metabolic pathway ofd-xylose utilization was introduced into these two strains. This was accomplished by heterogenous expression of two well-selected genes,xylA, encoding xylose isomerase, andxylB, encoding xylulokinase fromStreptomyces lividansTK23, under the control of thetacpromoter with anEscherichia coli-Rhodococcusshuttle vector. The recombinantR. jostiiRHA1 bearingxylAcould grow on xylose as the sole carbon source, and additional expression ofxylBfurther improved the biomass yield. The recombinant could consume both glucose and xylose in the sugar mixture, although xylose metabolism was still affected by the presence of glucose. The xylose metabolic pathway was also introduced into the high-lipid-producing strainR. opacusPD630 by expression ofxylAandxylB. Under nitrogen-limited conditions, the fatty acid composition was determined, and lipid produced from xylose by recombinants ofR. jostiiRHA1 andR. opacusPD630 carryingxylAandxylBrepresented up to 52.5% and 68.3% of the cell dry weight (CDW), respectively. This work demonstrates that it is feasible to produce lipid from the sugars, including xylose, derived from renewable feedstock by genetic modification of rhodococcus strains.


2010 ◽  
Vol 76 (9) ◽  
pp. 2884-2894 ◽  
Author(s):  
Efraín Manilla-Pérez ◽  
Alvin Brian Lange ◽  
Stephan Hetzler ◽  
Marc Wältermann ◽  
Rainer Kalscheuer ◽  
...  

ABSTRACT In many microorganisms, the key enzyme responsible for catalyzing the last step in triacylglycerol (TAG) and wax ester (WE) biosynthesis is an unspecific acyltransferase which is also referred to as wax ester synthase/acyl coenzyme A (acyl-CoA):diacylglycerol acyltransferase (WS/DGAT; AtfA). The importance and function of two AtfA homologues (AtfA1 and AtfA2) in the biosynthesis of TAGs and WEs in the hydrocarbon-degrading marine bacterium Alcanivorax borkumensis SK2 have been described recently. However, after the disruption of both the AtfA1 and AtfA2 genes, reduced but substantial accumulation of TAGs was still observed, indicating the existence of an alternative TAG biosynthesis pathway. In this study, transposon-induced mutagenesis was applied to an atfA1 atfA2 double mutant to screen for A. borkumensis mutants totally defective in biosynthesis of neutral lipids in order to identify additional enzymes involved in the biosynthesis of these lipids. At the same time, we have searched for a totally TAG-negative mutant in order to study the function of TAGs in A. borkumensis. Thirteen fluorescence-negative mutants were identified on Nile red ONR7a agar plates and analyzed for their abilities to synthesize lipids. Among these, mutant 2 M131 was no longer able to synthesize and accumulate TAGs if pyruvate was used as the sole carbon source. The transposon insertion was localized in a gene encoding a putative cytochrome c family protein (ABO_1185). Growth and TAG accumulation experiments showed that the disruption of this gene resulted in the absence of TAGs in 2 M131 but that growth was not affected. In cells of A. borkumensis SK2 grown on pyruvate as the sole carbon source, TAGs represented about 11% of the dry weight of the cells, while in the mutant 2 M131, TAGs were not detected by thin-layer and gas chromatography analyses. Starvation and lipid mobilization experiments revealed that the lipids play an important role in the survival of the cells. The function of neutral lipids in A. borkumensis SK2 is discussed.



2019 ◽  
Vol 85 (18) ◽  
Author(s):  
Héctor M. Alvarez ◽  
O. Marisa Herrero ◽  
Roxana A. Silva ◽  
Martín A. Hernández ◽  
Mariana P. Lanfranconi ◽  
...  

ABSTRACT Some species belonging to the Rhodococcus genus, such as Rhodococcus opacus, R. jostii, and R. wratislaviensis, are known to be oleaginous microorganisms, since they are able to accumulate triacylglycerols (TAG) at more than 20% of their weight (dry weight). Oleaginous rhodococci are promising microbial cell factories for the production of lipids to be used as fuels and chemicals. Cells could be engineered to create strains capable of producing high quantities of oils from industrial wastes and a variety of high-value lipids. The comprehensive understanding of carbon metabolism and its regulation will contribute to the design of a reliable process for bacterial oil production. Bacterial oleagenicity requires an integral configuration of metabolism and regulatory processes rather than the sole existence of an efficient lipid biosynthesis pathway. In recent years, several studies have been focused on basic aspects of TAG biosynthesis and accumulation using R. opacus PD630 and R. jostii RHA1 strains as models of oleaginous bacteria. The combination of results obtained in these studies allows us to propose a metabolic landscape for oleaginous rhodococci. In this context, this article provides a comprehensive and integrative view of different metabolic and regulatory attributes and innovations that explain the extraordinary ability of these bacteria to synthesize and accumulate TAG. We hope that the accessibility to such information in an integrated way will help researchers to rationally select new targets for further studies in the field.



2015 ◽  
Vol 198 (3) ◽  
pp. 386-393 ◽  
Author(s):  
Santosh Koirala ◽  
Xiaoyi Wang ◽  
Christopher V. Rao

ABSTRACTGlucose is known to inhibit the transport and metabolism of many sugars inEscherichia coli. This mechanism leads to its preferential consumption. Far less is known about the preferential utilization of nonglucose sugars inE. coli. Two exceptions arel-arabinose andd-xylose. Previous studies have shown thatl-arabinose inhibitsd-xylose metabolism inEscherichia coli. This repression results froml-arabinose-bound AraC binding to the promoter of thed-xylose metabolic genes and inhibiting their expression. This mechanism, however, has not been explored in single cells. Both thel-arabinose andd-xylose utilization systems are known to exhibit a bimodal induction response to their cognate sugar, where mixed populations of cells either expressing the metabolic genes or not are observed at intermediate sugar concentrations. This suggests thatl-arabinose can only inhibitd-xylose metabolism inl-arabinose-induced cells. To understand how cross talk between these systems affects their response, we investigatedE. coliduring growth on mixtures ofl-arabinose andd-xylose at single-cell resolution. Our results showed that mixed, multimodal populations ofl-arabinose- andd-xylose-induced cells occurred at intermediate sugar concentrations. We also found thatd-xylose inhibited the expression of thel-arabinose metabolic genes and that this repression was due to XylR. These results demonstrate that a strict hierarchy does not exist betweenl-arabinose andd-xylose as previously thought. The results may also aid in the design ofE. colistrains capable of simultaneous sugar consumption.IMPORTANCEGlucose,d-xylose, andl-arabinose are the most abundant sugars in plant biomass. Developing efficient fermentation processes that convert these sugars into chemicals and fuels will require strains capable of coutilizing these sugars. Glucose has long been known to repress the expression of thel-arabinose andd-xylose metabolic genes inEscherichia coli. Recent studies found thatl-arabinose also represses the expression of thed-xylose metabolic genes. In the present study, we found thatd-xylose also represses the expression of thel-arabinose metabolic genes, leading to mixed populations of cells capable of utilizingl-arabinose andd-xylose. These results further our understanding of mixed-sugar utilization and may aid in strain design.



2009 ◽  
Vol 75 (9) ◽  
pp. 2784-2791 ◽  
Author(s):  
Jean-Paul Meijnen ◽  
Johannes H. de Winde ◽  
Harald J. Ruijssenaars

ABSTRACT The oxidative d-xylose catabolic pathway of Caulobacter crescentus, encoded by the xylXABCD operon, was expressed in the gram-negative bacterium Pseudomonas putida S12. This engineered transformant strain was able to grow on d-xylose as a sole carbon source with a biomass yield of 53% (based on g [dry weight] g d-xylose−1) and a maximum growth rate of 0.21 h−1. Remarkably, most of the genes of the xylXABCD operon appeared to be dispensable for growth on d-xylose. Only the xylD gene, encoding d-xylonate dehydratase, proved to be essential for establishing an oxidative d-xylose catabolic pathway in P. putida S12. The growth performance on d-xylose was, however, greatly improved by coexpression of xylXA, encoding 2-keto-3-deoxy-d-xylonate dehydratase and α-ketoglutaric semialdehyde dehydrogenase, respectively. The endogenous periplasmic glucose dehydrogenase (Gcd) of P. putida S12 was found to play a key role in efficient oxidative d-xylose utilization. Gcd activity not only contributes to d-xylose oxidation but also prevents the intracellular accumulation of toxic catabolic intermediates which delays or even eliminates growth on d-xylose.



2012 ◽  
Vol 78 (9) ◽  
pp. 3286-3297 ◽  
Author(s):  
Yongzhen Xia ◽  
Jan Hendrik Wübbeler ◽  
Qingsheng Qi ◽  
Alexander Steinbüchel

ABSTRACTAdvenella mimigardefordensisstrain DPN7Twas genetically modified to produce poly(3-mercaptopropionic acid) (PMP) homopolymer by exploiting the recently unraveled process of 3,3′-dithiodipropionic acid (DTDP) catabolism. Production was achieved by systematically engineering the metabolism of this strain as follows: (i) deletion of its inherent 3MP dioxygenase-encoding gene (mdo), (ii) introduction of thebuk-ptboperon (genes encoding the butyrate kinase, Buk, and the phosphotransbutyrylase, Ptb, fromClostridium acetobutylicum), and (iii) overexpression of its own polyhydroxyalkanoate synthase (phaCAm). These measures yielded the potent PMP production strainA. mimigardefordensisstrain SHX22. The deletion ofmdowas required for adequate synthesis of PMP due to the resulting accumulation of 3MP during utilization of DTDP. Overexpression of the plasmid-bornebuk-ptboperon caused a severe growth repression. This effect was overcome by inserting this operon into the genome. Polyhydroxyalkanoate (PHA) synthases from different origins were compared. The native PHA synthase ofA. mimigardefordensis(phaCAm) was obviously the best choice to establish homopolythioester production in this strain. In addition, the cultivation conditions, including an appropriate provision of the carbon source, were further optimized to enhance PMP production. The engineered strain accumulated PMP up to approximately 25% (wt/wt) of the cell dry weight when cultivated in mineral salts medium containing glycerol as the carbon source in addition to DTDP as the sulfur-providing precursor. According to our knowledge, this is the first report of PMP homopolymer production by a metabolically engineered bacterium using DTDP, which is nontoxic, as the precursor substrate.



2013 ◽  
Vol 79 (12) ◽  
pp. 3582-3589 ◽  
Author(s):  
Daniel Heinrich ◽  
Björn Andreessen ◽  
Mohamed H. Madkour ◽  
Mansour A. Al-Ghamdi ◽  
Ibrahim I. Shabbaj ◽  
...  

ABSTRACTIn recent years, glycerol has become an attractive carbon source for microbial processes, as it accumulates massively as a by-product of biodiesel production, also resulting in a decline of its price. A potential use of glycerol in biotechnology is the synthesis of poly(3-hydroxypropionate) [poly(3HP)], a biopolymer with promising properties which is not synthesized by any known wild-type organism. In this study, the genes for 1,3-propanediol dehydrogenase (dhaT) and aldehyde dehydrogenase (aldD) ofPseudomonas putidaKT2442, propionate-coenzyme A (propionate-CoA) transferase (pct) ofClostridium propionicumX2, and polyhydroxyalkanoate (PHA) synthase (phaC1) ofRalstonia eutrophaH16 were cloned and expressed in the 1,3-propanediol producerShimwellia blattae. In a two-step cultivation process, recombinantS. blattaecells accumulated up to 9.8% ± 0.4% (wt/wt [cell dry weight]) poly(3HP) with glycerol as the sole carbon source. Furthermore, the engineered strain tolerated the application of crude glycerol derived from biodiesel production, yielding a cell density of 4.05 g cell dry weight/liter in a 2-liter fed-batch fermentation process.



2020 ◽  
Author(s):  
Ge Gao ◽  
Yan Zhang ◽  
Ying Zhou ◽  
Bang-Ce Ye

Abstract Background: L-ornithine is a basic amino acid, which shows significant value in food and medicine industries. Xylose is the most important alternative carbon source of glucose in lignocellulosic hydrolysate. It is urgent to develop a high-efficiency cell factory for L-ornithine production with glucose and xylose.Results: In this study, the genes enconding xylose isomerase and xylulose kinase were introduced into Corynebacterium glutamicum S9114 to establish xylose metabolism pathway, and then xylose became a substitute carbon source of glucose. In addition, the optimization and overexpression of phosphoenolpyruvate carboxylase and pentose transporter had been conducted to promote the synthesis of L-ornithine for the first time. Furthermore, though optimizing the concentration ratio of glucose and xylose (7:3), adding biotin and thiamine hydrochloride, we arrived at the highest L-ornithine yield 41.5g/L in shaking flask fermentation so far.Conclusions: Our results demonstrate that the combination of metabolic engineering and the optimization of fermentation process can make great potential for L-ornithine production by lignocellulose hydrolysate.



Author(s):  
Yixuan Zhu ◽  
Jingtao Zhang ◽  
Lang Zhu ◽  
Zefang Jia ◽  
Qi Li ◽  
...  

Xylose is the second most abundant sugar in lignocellulose, but it cannot be used as carbon source by budding yeast Saccharomyces cerevisiae. Rational promoter elements engineering approaches were taken for efficient xylose fermentation in budding yeast. Among promoters surveyed, HXT7 exhibited the best performance. The HXT7 promoter is suppressed in the presence of glucose and derepressed by xylose, making it a promising candidate to drive xylose metabolism. However, simple ectopic expression of both key xylose metabolic genes XYL1 and XYL2 by the HXT7 promoter resulted in massive accumulation of the xylose metabolic byproduct xylitol. Through the HXT7-driven expression of a reported redox variant, XYL1-K270R, along with optimized expression of XYL2 and the downstream pentose phosphate pathway genes, a balanced xylose metabolism toward ethanol formation was achieved. Fermented in a culture medium containing 50 g/L xylose as the sole carbon source, xylose is nearly consumed, with less than 3 g/L xylitol, and more than 16 g/L ethanol production. Hence, the combination of an inducible promoter and redox balance of the xylose utilization pathway is an attractive approach to optimizing fuel production from lignocellulose.



2021 ◽  
Vol 37 (3) ◽  
pp. 29-41
Author(s):  
Yu.M. Kosikhina ◽  
E.B. Vinogradova ◽  
D.A. Dementev ◽  
V.S. Korobov ◽  
V.A. Zolottsev ◽  
...  

Recombinant Yarrowia lipolytica yeast has been used as a host strain for the expression of the Saccharomyces cerevisiae ScSUC2 gene and Y. lipolytica YlHXK1 gene encoding invertase and hexakinase, respectively. The expression was carried out on the background of the enhanced pathway of the synthesis of neutral lipids. This allowed the yeast to efficiently utilize glucose as a single carbon source. The engineered strain accumulated neutral lipids in amount of 50.7% of biomass dry weight, when cultured in tubes in minimal medium with nitrogen limitation and high sucrose content. The next metabolic engineering step was the use of the CRISPR-Cas9 editing system to introduce a heterologous β-carotene synthesis pathway by the expression of the Mucor circinelloides genes CarRP and CarB, encoding the bifunctional enzyme phytoene synthase/licopene-β-cyclase (carRP) and phytoene dehydrogenase (carB), as well as an increase in the expression level of the Y. lipolytica YlGGS1 gene, encoding geranyl diphosphate synthase enzyme. The β-carotene production on a sucrose-containing medium was shown for the first time; it amounted for 24.0 mg/g dry biomass, or 406.9 mg/L, on the 5th day of cultivation in tubes in a rich medium with a sucrose portioned supply (50 g/L). The corresponding values for a rich medium with a higher sucrose concentration (90 g/L) were 21.9 mg/g dry biomass and 625.8 mg/L. Yarrowia lipolytica, β-carotene, sucrose, CRISPR-Cas9 The plasmids pdKu70Yl-URA3, pLTet-SP-CAT, pARS-Cre-reverse, pMW-att-Cm and pGPD1Yl were kindly provided by Ph.D. I.A. Laptev ("Kurchatov Institute"-GOSNIIGENETIKA NRC). The work was carried out using the equipment of the Multipurpose Scientific Facility of the "Russian State Collection of Industrial Microorganisms" National Bio-Resource Center, NRC «Kurchatov Institute»-GOSNIIGENETIKA. The work was supported by state assignment no. 14 of 25.07.2012 AAAA-A20-120093090016-9. The quantitative analysis of lipids and β-carotene was carried out by V.A. Zolottsev within the framework of the "Long-Term Program of Fundamental Scientific Research in the Russian Federation (2021-2030)".



2014 ◽  
Vol 81 (3) ◽  
pp. 1038-1046 ◽  
Author(s):  
Irene N. Kasumba ◽  
Aaron Bestor ◽  
Kit Tilly ◽  
Patricia A. Rosa

ABSTRACTTargeted mutagenesis and complementation are important tools for studying genes of unknown function in the Lyme disease spirocheteBorrelia burgdorferi. A standard method of complementation is reintroduction of a wild-type copy of the targeted gene on a shuttle vector. However, shuttle vectors are present at higher copy numbers thanB. burgdorferiplasmids and are potentially unstable in the absence of selection, thereby complicating analyses in the mouse-tick infectious cycle.B. burgdorferihas over 20 plasmids, with some, such as linear plasmid 25 (lp25), carrying genes required by the spirochetein vivobut relatively unstable duringin vitrocultivation. We propose that complementation on an endogenous plasmid such as lp25 would overcome the copy number andin vivostability issues of shuttle vectors. In addition, insertion of a selectable marker on lp25 could ensure its stable maintenance by spirochetes in culture. Here, we describe the construction of a multipurpose allelic-exchange vector containing a multiple-cloning site and either of two selectable markers. This suicide vector directs insertion of the complementing gene into thebbe02locus, a site on lp25 that was previously shown to be nonessential during bothin vitroandin vivogrowth. We demonstrate the functional utility of this strategy by restoring infectivity to anospCmutant through complementation at this site on lp25 and stable maintenance of theospCgene throughout mouse infection. We conclude that this represents a convenient and widely applicable method for stable gene complementation inB. burgdorferi.



Sign in / Sign up

Export Citation Format

Share Document