scholarly journals Impaired Temperature Stress Response of a Streptococcus thermophilus deoD Mutant

2003 ◽  
Vol 69 (2) ◽  
pp. 1287-1289 ◽  
Author(s):  
Mario Varcamonti ◽  
Maria R. Graziano ◽  
Romilde Pezzopane ◽  
Gino Naclerio ◽  
Slavica Arsenijevic ◽  
...  

ABSTRACT An insertional deoD mutant of Streptococcus thermophilus strain SFi39 had a reduced growth rate at 20°C and an enhanced survival capacity to heat shock compared to the wild type, indicating that the deoD product is involved in temperature shock adaptation. We report evidence that ppGpp is implicated in this dual response.

2013 ◽  
Vol 24 (2) ◽  
pp. 115-128 ◽  
Author(s):  
Aaron Z. Welch ◽  
Patrick A. Gibney ◽  
David Botstein ◽  
Douglas E. Koshland

Tolerance to desiccation in cultures of Saccharomyces cerevisiae is inducible; only one in a million cells from an exponential culture survive desiccation compared with one in five cells in stationary phase. Here we exploit the desiccation sensitivity of exponentially dividing cells to understand the stresses imposed by desiccation and their stress response pathways. We found that induction of desiccation tolerance is cell autonomous and that there is an inverse correlation between desiccation tolerance and growth rate in glucose-, ammonia-, or phosphate-limited continuous cultures. A transient heat shock induces a 5000–fold increase in desiccation tolerance, whereas hyper-ionic, -reductive, -oxidative, or -osmotic stress induced much less. Furthermore, we provide evidence that the Sch9p-regulated branch of the TOR and Ras-cAMP pathway inhibits desiccation tolerance by inhibiting the stress response transcription factors Gis1p, Msn2p, and Msn4p and by activating Sfp1p, a ribosome biogenesis transcription factor. Among 41 mutants defective in ribosome biogenesis, a subset defective in 60S showed a dramatic increase in desiccation tolerance independent of growth rate. We suggest that reduction of a specific intermediate in 60S biogenesis, resulting from conditions such as heat shock and nutrient deprivation, increases desiccation tolerance.


2011 ◽  
Vol 111 (4) ◽  
pp. 1142-1149 ◽  
Author(s):  
Kazuyuki Yasuhara ◽  
Yoshitaka Ohno ◽  
Atsushi Kojima ◽  
Kenji Uehara ◽  
Moroe Beppu ◽  
...  

Effects of heat shock transcription factor 1 (HSF1) gene on the regrowth of atrophied mouse soleus muscles were studied. Both HSF1-null and wild-type mice were subjected to continuous hindlimb suspension for 2 wk followed by 4 wk of ambulation recovery. There was no difference in the magnitude of suspension-related decrease of muscle weight, protein content, and the cross-sectional area of muscle fibers between both types of mice. However, the regrowth of atrophied soleus muscle in HSF1-null mice was slower compared with that in wild-type mice. Lower baseline expression level of HSP25, HSC70, and HSP72 were noted in soleus muscle of HSF1-null mice. Unloading-associated downregulation and reloading-associated upregulation of HSP25 and HSP72 mRNA were observed not only in wild-type mice but also in HSF1-null mice. Reloading-associated upregulation of HSP72 and HSP25 during the regrowth of atrophied muscle was observed in wild-type mice. Minor and delayed upregulation of HSP72 at mRNA and protein levels was also seen in HSF1-null mice. Significant upregulations of HSF2 and HSF4 were observed immediately after the suspension in HSF1-null mice, but not in wild-type mice. Therefore, HSP72 expression in soleus muscle might be regulated by the posttranscriptional level, but not by the stress response. Evidence from this study suggested that the upregulation of HSPs induced by HSF1-associated stress response might play, in part, important roles in the mechanical loading (stress)-associated regrowth of skeletal muscle.


1995 ◽  
Vol 15 (9) ◽  
pp. 4890-4897 ◽  
Author(s):  
J T Halladay ◽  
E A Craig

Strains carrying deletions in both the SSA1 and SSA2 HSP70 genes of Saccharomyces cerevisiae exhibit pleiotropic phenotypes, including the inability to grow at 37 degrees C or higher, reduced growth rate at permissive temperatures, increased HSP gene expression, and constitutive thermotolerance. A screen for extragenic suppressors of the ssa1 ssa2 slow-growth phenotype identified a spontaneous dominant suppressor mutation, EXA3-1 (R.J. Nelson, M. Heschl, and E.A. Craig, Genetics 131:277-285, 1992). Here we report that EXA3-1 is an allele of HSF1, which encodes the heat shock transcription factor (HSF). Strains containing the EXA3-1 allele in a wild-type background exhibit a 10- to 15-fold reduction in HSF activity during steady-state growth conditions as well as a delay in the accumulation of the SSA4, HSP26, and HSP104 mRNAs after a heat shock. EXA3-1-mediated suppression is the result of a single amino acid substitution of a highly conserved residue in the HSF DNA-binding domain which drastically reduces the ability of HSF to bind to heat shock elements as evaluated by band shift analysis. Together, these results indicate that the poor growth of ssa1 ssa2 strains is the result, at least in part, of the overproduction of a deleterious heat shock protein(s). This conclusion is supported by the fact that the levels of at least some heat shock proteins are reduced in ssa1 ssa2 cells containing the EXA3-1 allele. Surprisingly, strains containing the EXA3-1 allele in a wild-type HSP70 background grow early as well as the wild-type strain over a wide temperature range, displaying only a slight reduction in growth rate at 37 degrees Celsius, indicating that cells contain significantly more HSF activity than is require for growth under steady-state conditions.


AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jian Ma ◽  
Xueying Wang ◽  
Ting Zhou ◽  
Rui Hu ◽  
Huawei Zou ◽  
...  

AbstractThis study aimed to investigate the effects of cofD gene knock-out on the synthesis of coenzyme F420 and production of methane in Methanobrevibacter ruminantium (M. ruminantium). The experiment successfully constructed a cofD gene knock-out M. ruminantium via homologous recombination technology. The results showed that the logarithmic phase of mutant M. ruminantium (12 h) was lower than the wild-type (24 h). The maximum biomass and specific growth rate of mutant M. ruminantium were significantly lower (P < 0.05) than those of wild-type, and the maximum biomass of mutant M. ruminantium was approximately half of the wild-type; meanwhile, the proliferation was reduced. The synthesis amount of coenzyme F420 of M. ruminantium was significantly decreased (P < 0.05) after the cofD gene knock-out. Moreover, the maximum amount of H2 consumed and CH4 produced by mutant were 14 and 2% of wild-type M. ruminantium respectively. In conclusion, cofD gene knock-out induced the decreased growth rate and reproductive ability of M. ruminantium. Subsequently, the synthesis of coenzyme F420 was decreased. Ultimately, the production capacity of CH4 in M. ruminantium was reduced. Our research provides evidence that cofD gene plays an indispensable role in the regulation of coenzyme F420 synthesis and CH4 production in M. ruminantium.


Biomolecules ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 27
Author(s):  
Iwona Sadura ◽  
Dariusz Latowski ◽  
Jana Oklestkova ◽  
Damian Gruszka ◽  
Marek Chyc ◽  
...  

Plants have developed various acclimation strategies in order to counteract the negative effects of abiotic stresses (including temperature stress), and biological membranes are important elements in these strategies. Brassinosteroids (BR) are plant steroid hormones that regulate plant growth and development and modulate their reaction against many environmental stresses including temperature stress, but their role in modifying the properties of the biological membrane is poorly known. In this paper, we characterise the molecular dynamics of chloroplast membranes that had been isolated from wild-type and a BR-deficient barley mutant that had been acclimated to low and high temperatures in order to enrich the knowledge about the role of BR as regulators of the dynamics of the photosynthetic membranes. The molecular dynamics of the membranes was investigated using electron paramagnetic resonance (EPR) spectroscopy in both a hydrophilic and hydrophobic area of the membranes. The content of BR was determined, and other important membrane components that affect their molecular dynamics such as chlorophylls, carotenoids and fatty acids in these membranes were also determined. The chloroplast membranes of the BR-mutant had a higher degree of rigidification than the membranes of the wild type. In the hydrophilic area, the most visible differences were observed in plants that had been grown at 20 °C, whereas in the hydrophobic core, they were visible at both 20 and 5 °C. There were no differences in the molecular dynamics of the studied membranes in the chloroplast membranes that had been isolated from plants that had been grown at 27 °C. The role of BR in regulating the molecular dynamics of the photosynthetic membranes will be discussed against the background of an analysis of the photosynthetic pigments and fatty acid composition in the chloroplasts.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 767
Author(s):  
Kamar Hamade ◽  
Ophélie Fliniaux ◽  
Jean-Xavier Fontaine ◽  
Roland Molinié ◽  
Elvis Otogo Nnang ◽  
...  

Lignans, phenolic plant secondary metabolites, are derived from the phenylpropanoid biosynthetic pathway. Although, being investigated for their health benefits in terms of antioxidant, antitumor, anti-inflammatory and antiviral properties, the role of these molecules in plants remains incompletely elucidated; a potential role in stress response mechanisms has been, however, proposed. In this study, a non-targeted metabolomic analysis of the roots, stems, and leaves of wild-type and PLR1-RNAi transgenic flax, devoid of (+) secoisolariciresinol diglucoside ((+) SDG)—the main flaxseed lignan, was performed using 1H-NMR and LC-MS, in order to obtain further insight into the involvement of lignan in the response of plant to osmotic stress. Results showed that wild-type and lignan-deficient flax plants have different metabolic responses after being exposed to osmotic stress conditions, but they both showed the capacity to induce an adaptive response to osmotic stress. These findings suggest the indirect involvement of lignans in osmotic stress response.


Genetics ◽  
1996 ◽  
Vol 142 (4) ◽  
pp. 1083-1093 ◽  
Author(s):  
Carlos C Evangelista ◽  
Ana M Rodriguez Torres ◽  
M Paullin Limbach ◽  
Richard S Zitomer

Abstract Yeast respond to a variety of stresses through a global stress response that is mediated by a number of signal transduction pathways and the cis-acting STRE DNA sequence. The CYC7 gene, encoding iso-2-cytochrome c, has been demonstrated to respond to heat shock, glucose starvation, approach-to-stationary phase, and, as we demonstrate here, to osmotic stress. This response was delayed in a the hogl-Δ1 strain implicating the Hog1 mitogen-activated protein kinase cascade, a known component of the global stress response. Deletion analysis of the CYC7 regulatory region suggested that three STRE elements were each capable of inducing the stress response. Mutations in the ROX3 gene prevented CYC7 RNA accumulation during heat shock and osmotic stress. ROX3 RNA levels were shown to be induced by stress through a novel regulatory element. A selection for high-copy suppressors of a ROX3 temperature-sensitive allele resulted in the isolation of RTS1, encoding a protein with homology to the B′ regulatory subunit of protein phosphatase 2A0. Deletion of RTS1 caused temperature and osmotic sensitivity and increased accumulation of CYC7 RNA under all conditions. Over-expression of this gene caused increased CYC7 RNA accumulation in rox3 mutants but not in wild-type cells.


Sign in / Sign up

Export Citation Format

Share Document