scholarly journals A Flow-Cytometric Gram-Staining Technique for Milk-Associated Bacteria

2003 ◽  
Vol 69 (5) ◽  
pp. 2857-2863 ◽  
Author(s):  
Claus Holm ◽  
Lene Jespersen

ABSTRACT A Gram-staining technique combining staining with two fluorescent stains, Oregon Green-conjugated wheat germ agglutinin (WGA) and hexidium iodide (HI) followed by flow-cytometric detection is described. WGA stains gram-positive bacteria while HI binds to the DNA of all bacteria after permeabilization by EDTA and incubation at 50°C for 15 min. For WGA to bind to gram-positive bacteria, a 3 M potassium chloride solution was found to give the highest fluorescence intensity. A total of 12 strains representing some of the predominant bacterial species in bulk tank milk and mixtures of these were stained and analyzed by flow cytometry. Overall, the staining method showed a clear differentiation between gram-positive and gram-negative bacterial populations. For stationary-stage cultures of seven gram-positive bacteria and five gram-negative bacteria, an average of 99% of the cells were correctly interpreted. The method was only slightly influenced by the growth phase of the bacteria or conditions such as freezing at −18°C for 24 h. For any of these conditions, an average of at least 95% of the cells were correctly interpreted. When stationary-stage cultures were stored at 5°C for 14 days, an average of 86% of the cells were correctly interpreted. The Gram-staining technique was applied to the flow cytometry analysis of bulk tank milk inoculated with Staphylococcus aureus and Escherichia coli. These results demonstrate that the technique is suitable for analyzing milk samples without precultivation.

2018 ◽  
Vol 10 (3) ◽  
pp. 622-628
Author(s):  
Fitri Arum Sasi ◽  
Hermin Pancasakti Kusumaningrum ◽  
Anto Budiharjo

Indigenous bacteria are able to remove the metals contamination in environment. This study aimed to assess the resistance of bacterial species to Zinc (Zn) in Banger River, Pekalongan City. The bacteria from three different parts of Banger River were isolated and inoculated in Zn-selective medium. Then, molecular identification to determine the bacteria species was conducted using polymerase chain reaction (PCR) by applying forward-reverse 16SrRNA gene primers. The sequences analysis was conducted using MUSCLE and MEGA6. There were seven dominant species that possibly resistant to Zn. Approximately, every isolate could reach more than 95 % from 2000 ppm of Zn in the medium. The higher absorption of Zn was found in Z5 isolate. The seven bacteria species were clustered into nine genera i.e. Klebsiela, Xenorhabdus, Cronobacter, Enterobacter, Escherichia, Shigella and Sporomusa known as Gram Negative bacteria and Clostridium and Bacillus as Gram Positive bacteria. In Gram Positive bacteria, especially Bacillus sp, carboxyl group in peptidoglycan play a role as metal binder. In Gram-negative bacteria, lipopolysaccharide (LPS) which is highly anionic component on the outer membrane, able to catch the Zn. Besides that, Enterobacter activates endogen antioxidants such as glutathione peroxidase (GSHPx), glutathione reductase (GR), catalase (CAT) and superoxide dismutase (SOD). The research found there was possible seven novel indigenous bacteria species in Banger that able to remove Zn from the sediment extremely. This finding can be developed as an eco-friendly approach to reduce metals pollution using local microorganisms.


2017 ◽  
Vol 61 (11) ◽  
Author(s):  
Omeed Faghih ◽  
Zhongsheng Zhang ◽  
Ranae M. Ranade ◽  
J. Robert Gillespie ◽  
Sharon A. Creason ◽  
...  

ABSTRACT Antibiotic-resistant bacteria are widespread and pose a growing threat to human health. New antibiotics acting by novel mechanisms of action are needed to address this challenge. The bacterial methionyl-tRNA synthetase (MetRS) enzyme is essential for protein synthesis, and the type found in Gram-positive bacteria is substantially different from its counterpart found in the mammalian cytoplasm. Both previously published and new selective inhibitors were shown to be highly active against Gram-positive bacteria with MICs of ≤1.3 μg/ml against Staphylococcus, Enterococcus, and Streptococcus strains. Incorporation of radioactive precursors demonstrated that the mechanism of activity was due to the inhibition of protein synthesis. Little activity against Gram-negative bacteria was observed, consistent with the fact that Gram-negative bacterial species contain a different type of MetRS enzyme. The ratio of the MIC to the minimum bactericidal concentration (MBC) was consistent with a bacteriostatic mechanism. The level of protein binding of the compounds was high (>95%), and this translated to a substantial increase in MICs when the compounds were tested in the presence of serum. Despite this, the compounds were very active when they were tested in a Staphylococcus aureus murine thigh infection model. Compounds 1717 and 2144, given by oral gavage, resulted in 3- to 4-log decreases in the bacterial load compared to that in vehicle-treated mice, which was comparable to the results observed with the comparator drugs, vancomycin and linezolid. In summary, the research describes MetRS inhibitors with oral bioavailability that represent a class of compounds acting by a novel mechanism with excellent potential for clinical development.


2000 ◽  
Vol 68 (6) ◽  
pp. 3581-3586 ◽  
Author(s):  
Christina Hessle ◽  
Bengt Andersson ◽  
Agnes E. Wold

ABSTRACT Interleukin-10 (IL-10) and IL-12 are two cytokines secreted by monocytes/macrophages in response to bacterial products which have largely opposite effects on the immune system. IL-12 activates cytotoxicity and gamma interferon (IFN-γ) secretion by T cells and NK cells, whereas IL-10 inhibits these functions. In the present study, the capacities of gram-positive and gram-negative bacteria to induce IL-10 and IL-12 were compared. Monocytes from blood donors were stimulated with UV-killed bacteria from each of seven gram-positive and seven gram-negative bacterial species representing both aerobic and anaerobic commensals and pathogens. Gram-positive bacteria induced much more IL-12 than did gram-negative bacteria (median, 3,500 versus 120 pg/ml at an optimal dose of 25 bacteria/cell; P < 0.001), whereas gram-negative bacteria preferentially stimulated secretion of IL-10 (650 versus 200 pg/ml; P < 0.001). Gram-positive species also induced stronger major histocompatibility complex class II-restricted IFN-γ production in unfractionated blood mononuclear cells than did gram-negative species (12,000 versus 3,600 pg/ml; P < 0.001). The poor IL-12-inducing capacity of gram-negative bacteria was not remediated by addition of blocking anti-IL-10 antibodies to the cultures. No isolated bacterial component could be identified that mimicked the potent induction of IL-12 by whole gram-positive bacteria, whereas purified LPS induced IL-10. The results suggest that gram-positive bacteria induce a cytokine pattern that promotes Th1 effector functions.


2018 ◽  
Vol 84 (12) ◽  
Author(s):  
Qian Li ◽  
Manuel Montalban-Lopez ◽  
Oscar P. Kuipers

ABSTRACTLantibiotics are ribosomally synthesized and posttranslationally modified antimicrobial compounds containing lanthionine and methyl-lanthionine residues. Nisin, one of the most extensively studied and used lantibiotics, has been shown to display very potent activity against Gram-positive bacteria, and stable resistance is rarely observed. By binding to lipid II and forming pores in the membrane, nisin can cause the efflux of cellular constituents and inhibit cell wall biosynthesis. However, the activity of nisin against Gram-negative bacteria is much lower than that against Gram-positive bacteria, mainly because lipid II is located at the inner membrane, and the rather impermeable outer membrane in Gram-negative bacteria prevents nisin from reaching lipid II. Thus, if the outer membrane-traversing efficiency of nisin could be increased, the activity against Gram-negative bacteria could, in principle, be enhanced. In this work, several relatively short peptides with activity against Gram-negative bacteria were selected from literature data to be fused as tails to the C terminus of either full or truncated nisin species. Among these, we found that one of three tails (tail 2 [T2; DKYLPRPRPV], T6 [NGVQPKY], and T8 [KIAKVALKAL]) attached to a part of nisin displayed improved activity against Gram-negative microorganisms. Next, we rationally designed and reengineered the most promising fusion peptides. Several mutants whose activity significantly outperformed that of nisin against Gram-negative pathogens were obtained. The activity of the tail 16 mutant 2 (T16m2) construct against several important Gram-negative pathogens (i.e.,Escherichia coli,Klebsiella pneumoniae,Acinetobacter baumannii,Pseudomonas aeruginosa,Enterobacter aerogenes) was increased 4- to 12-fold compared to that of nisin. This study indicates that the rational design of nisin can selectively and significantly improve its outer membrane-permeating capacity as well as its activity against Gram-negative pathogens.IMPORTANCELantibiotics are antimicrobial peptides that are highly active against Gram-positive bacteria but that have relatively poor activity against most Gram-negative bacteria. Here, we modified the model lantibiotic nisin by fusing parts of it to antimicrobial peptides with known activity against Gram-negative bacteria. The appropriate selection of peptidic moieties that could be attached to (parts of) nisin could lead to a significant increase in its inhibitory activity against Gram-negative bacteria. Using this strategy, hybrids that outperformed nisin by displaying 4- to 12-fold higher levels of activity against relevant Gram-negative bacterial species were produced. This study shows the power of modified peptide engineering to alter target specificity in a desired direction.


2021 ◽  
Vol 9 (3) ◽  
pp. 592
Author(s):  
Mohamed Belal Hamed ◽  
Ewa Burchacka ◽  
Liselotte Angus ◽  
Arnaud Marchand ◽  
Jozefien De Geyter ◽  
...  

The increasing problem of bacterial resistance to antibiotics underscores the urgent need for new antibacterials. Protein export pathways are attractive potential targets. The Sec pathway is essential for bacterial viability and includes components that are absent from eukaryotes. Here, we used a new high-throughput in vivo screen based on the secretion and activity of alkaline phosphatase (PhoA), a Sec-dependent secreted enzyme that becomes active in the periplasm. The assay was optimized for a luminescence-based substrate and was used to screen a ~240K small molecule compound library. After hit confirmation and analoging, 14 HTS secretion inhibitors (HSI), belonging to eight structural classes, were identified with IC50 < 60 µM. The inhibitors were evaluated as antibacterials against 19 Gram-negative and Gram-positive bacterial species (including those from the WHO’s top pathogens list). Seven of them—HSI#6, 9; HSI#1, 5, 10; and HSI#12, 14—representing three structural families, were bacteriocidal. HSI#6 was the most potent hit against 13 species of both Gram-negative and Gram-positive bacteria with IC50 of 0.4 to 8.7 μM. HSI#1, 5, 9 and 10 inhibited the viability of Gram-positive bacteria with IC50 ~6.9–77.8 μM. HSI#9, 12, and 14 inhibited the viability of E. coli strains with IC50 < 65 μM. Moreover, HSI#1, 5 and 10 inhibited the viability of an E. coli strain missing TolC to improve permeability with IC50 4 to 14 μM, indicating their inability to penetrate the outer membrane. The antimicrobial activity was not related to the inhibition of the SecA component of the translocase in vitro, and hence, HSI molecules may target new unknown components that directly or indirectly affect protein secretion. The results provided proof of the principle that the new broad HTS approach can yield attractive nanomolar inhibitors that have potential as new starting compounds for optimization to derive potential antibiotics.


1952 ◽  
Vol 30 (1) ◽  
pp. 86-105
Author(s):  
Roland Fischer ◽  
P. Larose

The relations previously found to exist between the bactericidal activity of substances and their affinity for wool have been used as the basis for a further study of the similarity between Gram-negative bacteria and intact wool on the one hand, and between Gram-positive bacteria and degraded wool on the other. A porrespondence in behavior has been shown to exist in the case of Gram-staining, of the Eisenberg–Gutstein techniques, and of the Feulgen reaction. It was possible to produce with degraded wool a conversion from a Gram-positive state to a Gram-negative one (corresponding to that of intact wool) just as it is possible to carry out the similar conversion with Gram-positive bacteria by using oxidizing and/or acidic agents. Reconversion to the original Gram-positive state was also shown to be possible with reducing and/or alkaline agents. A mechanism is offered to explain the above findings and the respective cytochemical reactions characteristic of the cytoplasmic membrane of the bacteria. This mechanism is based on similarities in composition and structure (α-keratin) between the cytoplasmic membrane of Gram-positive bacteria and degraded wool, and the “cytoplasmic membrane” of Gram-negative bacteria and intact wool. Further possible similarities are pointed out. A new definition for bactericidal action is given in the light of these results. A direction for future work is indicated and discussed.


Author(s):  
Karamoko Detto ◽  
Fagbohoun Jean Bedel ◽  
Moroh Jean-Luc Aboya ◽  
Ouattara Gnénépari Odjo Mahoua ◽  
Djè Koffi Marcellin

The aim of this study is to evaluate some microbiological and physicochemical parameters during the production of artisanal beer based on honey and beeswax. Samples were collected at various critical points during the production process. The load of mesophilic aerobic germs and yeasts remains high during production. A total absence of lactic acid bacteria is observed in both types of beer during production. Moreover, Gram staining made it possible to isolate for wax beer, 26% of the Gram negative bacteria of which only one (1) is rod-shaped (5%) and (4) strains are hulls (21%) and 74% of the Gram positive bacteria of which three (3) strains are rods (16%) and eleven (11) strains are hulls (58%). For honey beer, 45% of the Gram-negative bacteria were isolated, of which seven (7) strains are hulls (32%) and three (3) strains are rods (13%), and 55% Gram-positive bacteria, of which seven (7) strains are hulls (32%) and five (5) strains are rods (23%). Wax and honey beers contain a high level of reducing sugars at the beginning of exploitation. During the heat treatment, the reducing sugars reduce the microorganisms disappear after 9 min and 11 min heat treatment respectively for wax and honey beer.


Author(s):  
Venere Cortazzo ◽  
Tiziana D’Inzeo ◽  
Liliana Giordano ◽  
Giulia Menchinelli ◽  
Flora Marzia Liotti ◽  
...  

Among molecular assays currently developed for detection and identification of pathogens (and their antimicrobial resistance genes) in positive blood cultures (BCs) (1), the BioFire FilmArray blood culture identification (BCID) panel (bioMérieux, Marcy l’Étoile, France)—a multiplex PCR assay with less than 2 minutes of hands-on time and a ∼1-hour turnaround time—allows syndromic diagnosis of bloodstream infection (BSI) (2, 3). Previously, the panel could identify 24 etiological agents of BSI (11 Gram-negative bacteria, 8 Gram-positive bacteria, and 5 yeast species), as well as three antimicrobial resistance genes (mecA, vanA/B, and blaKPC, which encodes Klebsiella pneumoniae carbapenemase). Now, the BioFire FilmArray BCID2 panel encompasses 43 molecular targets associated with BSI, including 15 Gram-negative bacteria, 11 Gram-positive bacteria, 7 yeast species, and 10 antimicrobial resistance genes (https://www.biomerieux-diagnostics.com/biofire-bcid-panel). The last targets include genes encoding for carbapenemases (IMP, KPC, OXA-48-like, NDM, and VIM), colistin resistance (mcr-1), ESBL (CTX-M), methicillin-resistance (mecA/C and, specifically for methicillin-resistant Staphylococcus aureus [MRSA], mecA/C and MREJ [mec right-extremity junction]), or vancomycin resistance (vanA/B). Unlike BCID, no published studies to date reported on the BCID2 performance. This study evaluated and compared the accuracy of BCID2 with that of BCID to identify bacterial species and relative antimicrobial resistance genes directly from positive BCs.


Author(s):  
B.K. Ghosh

Periplasm of bacteria is the space outside the permeability barrier of plasma membrane but enclosed by the cell wall. The contents of this special milieu exterior could be regulated by the plasma membrane from the internal, and by the cell wall from the external environment of the cell. Unlike the gram-negative organism, the presence of this space in gram-positive bacteria is still controversial because it cannot be clearly demonstrated. We have shown the importance of some periplasmic bodies in the secretion of penicillinase from Bacillus licheniformis.In negatively stained specimens prepared by a modified technique (Figs. 1 and 2), periplasmic space (PS) contained two kinds of structures: (i) fibrils (F, 100 Å) running perpendicular to the cell wall from the protoplast and (ii) an array of vesicles of various sizes (V), which seem to have evaginated from the protoplast.


Author(s):  
Jacob S. Hanker ◽  
Paul R. Gross ◽  
Beverly L. Giammara

Blood cultures are positive in approximately only 50 per cent of the patients with nongonococcal bacterial infectious arthritis and about 20 per cent of those with gonococcal arthritis. But the concept that gram-negative bacteria could be involved even in chronic arthritis is well-supported. Gram stains are more definitive in staphylococcal arthritis caused by gram-positive bacteria than in bacterial arthritis due to gram-negative bacteria. In the latter situation where gram-negative bacilli are the problem, Gram stains are helpful for 50% of the patients; they are only helpful for 25% of the patients, however, where gram-negative gonococci are the problem. In arthritis due to gram-positive Staphylococci. Gramstained smears are positive for 75% of the patients.


Sign in / Sign up

Export Citation Format

Share Document