scholarly journals Relationship of Vibrio Species Infection and Elevated Temperatures to Yellow Blotch/Band Disease in Caribbean Corals

2004 ◽  
Vol 70 (11) ◽  
pp. 6855-6864 ◽  
Author(s):  
James M. Cervino ◽  
Raymond L. Hayes ◽  
Shawn W. Polson ◽  
Sara C. Polson ◽  
Thomas J. Goreau ◽  
...  

ABSTRACT The bacterial and temperature factors leading to yellow blotch/band disease (YBD), which affects the major reef-building Caribbean corals Montastrea spp., have been investigated. Groups of bacteria isolated from affected corals and inoculated onto healthy corals caused disease signs similar to those of YBD. The 16S rRNA genes from these bacteria were sequenced and found to correspond to four Vibrio spp. Elevating the water temperature notably increased the rate of spread of YBD on inoculated corals and induced greater coral mortality. YBD-infected corals held at elevated water temperatures had 50% lower zooxanthella densities, 80% lower division rates, and a 75% decrease in chlorophyll a and c 2 pigments compared with controls. Histological sections indicated that the algal pyrenoid was fragmented into separate segments, along with a reconfiguration and swelling of the zooxanthellae, as well as vacuolization. YBD does not appear to produce the same physiological response formerly observed in corals undergoing temperature-related bleaching. Evidence indicates that YBD affects primarily the symbiotic algae rather than coral tissue.

Zootaxa ◽  
2021 ◽  
Vol 4974 (2) ◽  
pp. 333-360
Author(s):  
KOJI TOJO ◽  
KEN MIYAIRI ◽  
YUTO KATO ◽  
AYANA SAKANO ◽  
TOMOYA SUZUKI

A new mayfly species, Bleptus michinokuensis sp. nov. (Ephemeroptera: Heptageniidae) is described on the basis of specimens of male and female adults and mature nymphs collected at a seepage zone of a small freshwater branch of the ‘Tachiya-zawa-gawa’ River located amongst the northern foothills of Mt. Gassan (Shonai-machi Town, Yamagata Prefecture, Japan). This new Bleptus species is characterized by its clear fore and hind wings. That is, they neither exhibit the distinct black band on the fore wings, nor the characteristic darkened margins along the edges of both the fore and hind wings. Rather it has a blackish colored terminal half of its fore legs (i.e., tibial, tarsal and pretarsal segments). These features differ clearly when comparing them to the other known species, Bleptus fasciatus Eaton. The information and data describing the habitat and distribution range of this new species are also noted. We also examined and discussed the genetic relationship of two Bleptus mayflies to settle the taxonomic status, inferred from the partially sequenced cytochrome c oxidase subunit I (COI) and large mitochondrial ribosomal subunit (16S rRNA) genes, and also the nuclear internal transcribed spacer 2 (ITS2) gene sequences. Consequently, phenetic and molecular phylogenetic analyses agreed well in terms of clustering. 


2021 ◽  
Vol 12 ◽  
Author(s):  
Muhammad Suleman Qasim ◽  
Mirka Lampi ◽  
Minna-Maria K. Heinonen ◽  
Berta Garrido-Zabala ◽  
Dennis H. Bamford ◽  
...  

Species of genus Shewanella are among the most frequently identified psychrotrophic bacteria. Here, we have studied the cellular properties, growth dynamics, and stress conditions of cold-active Shewanella strain #4, which was previously isolated from Baltic Sea ice. The cells are rod-shaped of ~2μm in length and 0.5μm in diameter, and they grow between 0 and 25°C, with an optimum at 15°C. The bacterium grows at a wide range of conditions, including 0.5–5.5% w/v NaCl (optimum 0.5–2% w/v NaCl), pH 5.5–10 (optimum pH 7.0), and up to 1mM hydrogen peroxide. In keeping with its adaptation to cold habitats, some polyunsaturated fatty acids, such as stearidonic acid (18:4n-3), eicosatetraenoic acid (20:4n-3), and eicosapentaenoic acid (20:5n-3), are produced at a higher level at low temperature. The genome is 4,456kb in size and has a GC content of 41.12%. Uniquely, strain #4 possesses genes for sialic acid metabolism and utilizes N-acetyl neuraminic acid as a carbon source. Interestingly, it also encodes for cytochrome c3 genes, which are known to facilitate environmental adaptation, including elevated temperatures and exposure to UV radiation. Phylogenetic analysis based on a consensus sequence of the seven 16S rRNA genes indicated that strain #4 belongs to genus Shewanella, closely associated with Shewanella aestuarii with a ~97% similarity, but with a low DNA–DNA hybridization (DDH) level of ~21%. However, average nucleotide identity (ANI) analysis defines strain #4 as a separate Shewanella species (ANI score=76). Further phylogenetic analysis based on the 92 most conserved genes places Shewanella strain #4 into a distinct phylogenetic clade with other cold-active marine Shewanella species. Considering the phylogenetic, phenotypic, and molecular characterization, we conclude that Shewanella strain #4 is a novel species and name it Shewanella glacialimarina sp. nov. TZS-4T, where glacialimarina means sea ice. Consequently, S. glacialimarina TZS-4T constitutes a promising model for studying transcriptional and translational regulation of cold-active metabolism.


2012 ◽  
Vol 78 (6) ◽  
pp. 1692-1700 ◽  
Author(s):  
Cecilia Taulé ◽  
María Zabaleta ◽  
Cintia Mareque ◽  
Raúl Platero ◽  
Lucía Sanjurjo ◽  
...  

ABSTRACTAmong the leguminous trees native to Uruguay,Parapiptadenia rigida(Angico), a Mimosoideae legume, is one of the most promising species for agroforestry. Like many other legumes, it is able to establish symbiotic associations with rhizobia and belongs to the group known as nitrogen-fixing trees, which are major components of agroforestry systems. Information about rhizobial symbionts for this genus is scarce, and thus, the aim of this work was to identify and characterize rhizobia associated withP. rigida. A collection of Angico-nodulating isolates was obtained, and 47 isolates were selected for genetic studies. According to enterobacterial repetitive intergenic consensus PCR patterns and restriction fragment length polymorphism analysis of theirnifHand 16S rRNA genes, the isolates could be grouped into seven genotypes, including the generaBurkholderia,Cupriavidus, andRhizobium, among which theBurkholderiagenotypes were the predominant group. Phylogenetic studies ofnifH,nodA, andnodCsequences from theBurkholderiaand theCupriavidusisolates indicated a close relationship of these genes with those from betaproteobacterial rhizobia (beta-rhizobia) rather than from alphaproteobacterial rhizobia (alpha-rhizobia). In addition, nodulation assays with representative isolates showed that while theCupriavidusisolates were able to effectively nodulateMimosa pudica, theBurkholderiaisolates produced white and ineffective nodules on this host.


2012 ◽  
Vol 4 (1) ◽  
Author(s):  
Neviaty Putri Zamani

<p>Sandy anemone (Heteractis malu), belongs to Phylum Cnidaria, physiologically is very close to coral stone, which was a major component of coral reef ecosystems. As coral stone, Heteractis malu also has symbiotic algae (Zooxanthella). Physiologically, the alga symbiotic relationship of coral stone is almost similar with Heteractis malu. Maintaining Heteractis malu in the laboratory is relativly easier compared to that of coral stone. Advantages of the Heteractis malu vs. stone coral, its body is not covered by limestone makingit easier in processing analyses. The response of the anemone to stress is expected similar with coral stone. This research aims to analyze the response and adaptation of Heteractis malu to the temperature increase of 1 °C and 2 °C of the normal temperature (28 °C). The impact of temperature increases on Heteractis malu did not significantly affect the density of zooxanthellae, however, there was a significant increase of mitotic index. In addition, during a recovery process, Heteractis malu immune system did not show a significant increase based on its mitotic index results tended to decrease during the second phase of stress treatment.</p><p>Keywords: Adaptation, sandy anemone (Heteractis malu), temperature increase,, zooxanthellae</p>


2021 ◽  
Vol 19 (1) ◽  
pp. 47-58
Author(s):  
Anna S. Zhuravleva ◽  
Elena N. Volkova ◽  
Alexander S. Galushko

Anthropogenically altered soils of Saint Petersburg and Luga (Leningrad Region) were investigated for the presence of thermophilic aerobic chemoorganoheterotrophic bacteria, potentially capable of decomposing hydrocarbons at elevated temperatures (60 C). 6 strains of pure spore-forming cultures of bacteria were isolated. Analysis of the nucleotide sequences of the 16S rRNA genes showed that they belong to the genera Geobacillus and Aeribacillus. For the first time, we obtained information on the presence of representatives of the genus Aeribacillus, which are typical inhabitants of hot springs and zones with geothermal activity, in the soils of the regions of Saint Petersburg and the Leningrad Region.


2012 ◽  
Vol 4 (1) ◽  
Author(s):  
Neviaty Putri Zamani

Sandy anemone (Heteractis malu), belongs to Phylum Cnidaria, physiologically is very close to coral stone, which was a major component of coral reef ecosystems. As coral stone, Heteractis malu also has symbiotic algae (Zooxanthella). Physiologically, the alga symbiotic relationship of coral stone is almost similar with Heteractis malu. Maintaining Heteractis malu in the laboratory is relativly easier compared to that of coral stone. Advantages of the Heteractis malu vs. stone coral, its body is not covered by limestone makingit easier in processing analyses. The response of the anemone to stress is expected similar with coral stone. This research aims to analyze the response and adaptation of Heteractis malu to the temperature increase of 1 °C and 2 °C of the normal temperature (28 °C). The impact of temperature increases on Heteractis malu did not significantly affect the density of zooxanthellae, however, there was a significant increase of mitotic index. In addition, during a recovery process, Heteractis malu immune system did not show a significant increase based on its mitotic index results tended to decrease during the second phase of stress treatment.Keywords: Adaptation, sandy anemone (Heteractis malu), temperature increase,, zooxanthellae


2020 ◽  
Vol 70 (8) ◽  
pp. 4838-4842 ◽  
Author(s):  
Fabiana Tonial ◽  
Felipe Guella ◽  
Luciane Maria Pereira Passaglia ◽  
Fernando Hayashi Sant’Anna

Bacteria of the genus Paenibacillus are relevant to humans, animals and plants. The species Paenibacillus massiliensis and Paenibacillus panacisoli are Gram-stain-positive and endospore-forming bacilli isolated from a blood culture of a leukemia patient and from soil of a ginseng field, respectively. Comparative analyses of their 16S rRNA genes revealed that the two Paenibacillus species could be synonyms (99.3% sequence identity). In the present study we performed different genomic analyses in order to evaluate the phylogenetic relationship of these micro-organisms. Paenibacillus massiliensis DSM 16942T and P. panacisoli DSM 21345T presented a difference in their G+C content lower than 1 mol%, overall genome relatedness index values higher than the species circumscription thresholds (average nucleotide identity, 95.57 %; genome-wide ANI, =96.51 %; and orthologous ANI, 96.25 %), and a monophyletic grouping pattern in the phylogenies of the 16S rRNA gene and the proteome core. Considering that these strains present differential biochemical capabilities and that their computed digital DNA–DNA hybridization value is lower than the cut-off for bacterial subspecies circumscription, we suggest that each of them form different subspecies of P. massiliensis , Paenibacillus massiliensis subsp. panacisoli subsp. nov. (type strain DSM 21345T) and Paenibacillus massiliensis subsp. massiliensis subsp. nov. (type strain DSM 16942T).


2002 ◽  
Vol 68 (5) ◽  
pp. 2214-2228 ◽  
Author(s):  
Jorge Frias-Lopez ◽  
Aubrey L. Zerkle ◽  
George T. Bonheyo ◽  
Bruce W. Fouke

ABSTRACT Distinct partitioning has been observed in the composition and diversity of bacterial communities inhabiting the surface and overlying seawater of three coral species infected with black band disease (BBD) on the southern Caribbean island of Curaçao, Netherlands Antilles. PCR amplification and sequencing of bacterial 16S rRNA genes (rDNA) with universally conserved primers have identified over 524 unique bacterial sequences affiliated with 12 bacterial divisions. The molecular sequences exhibited less than 5% similarity in bacterial community composition between seawater and the healthy, black band diseased, and dead coral surfaces. The BBD bacterial mat rapidly migrates across and kills the coral tissue. Clone libraries constructed from the BBD mat were comprised of eight bacterial divisions and 13% unknowns. Several sequences representing bacteria previously found in other marine and terrestrial organisms (including humans) were isolated from the infected coral surfaces, including Clostridium spp., Arcobacter spp., Campylobacter spp., Cytophaga fermentans, Cytophaga columnaris, and Trichodesmium tenue.


2015 ◽  
Vol 41 (1) ◽  
pp. 51-58
Author(s):  
Mohammad Shamimul Alam ◽  
Hawa Jahan ◽  
Rowshan Ara Begum ◽  
Reza M Shahjahan

Heteropneustesfossilis, Clariasbatrachus and C. gariepinus are three major catfishes ofecological and economic importance. Identification of these fish species becomes aproblem when the usual external morphological features of the fish are lost or removed,such as in canned fish. Also, newly hatched fish larva is often difficult to identify. PCRsequencingprovides accurate alternative means of identification of individuals at specieslevel. So, 16S rRNA genes of three locally collected catfishes were sequenced after PCRamplification and compared with the same gene sequences available from othergeographical regions. Multiple sequence alignment of the 16S rRNA gene fragments ofthe catfish species has revealed polymorphic sites which can be used to differentiate thesethree species from one another and will provide valuable insight in choosing appropriaterestriction enzymes for PCR-RFLP based identification in future. Asiat. Soc. Bangladesh, Sci. 41(1): 51-58, June 2015


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1517
Author(s):  
Se-Hwan Cheon ◽  
Min-Ah Woo ◽  
Sangjin Jo ◽  
Young-Kee Kim ◽  
Ki-Joong Kim

The genus Zoysia Willd. (Chloridoideae) is widely distributed from the temperate regions of Northeast Asia—including China, Japan, and Korea—to the tropical regions of Southeast Asia. Among these, four species—Zoysia japonica Steud., Zoysia sinica Hance, Zoysia tenuifolia Thiele, and Zoysia macrostachya Franch. & Sav.—are naturally distributed in the Korean Peninsula. In this study, we report the complete plastome sequences of these Korean Zoysia species (NCBI acc. nos. MF953592, MF967579~MF967581). The length of Zoysia plastomes ranges from 135,854 to 135,904 bp, and the plastomes have a typical quadripartite structure, which consists of a pair of inverted repeat regions (20,962~20,966 bp) separated by a large (81,348~81,392 bp) and a small (12,582~12,586 bp) single-copy region. In terms of gene order and structure, Zoysia plastomes are similar to the typical plastomes of Poaceae. The plastomes encode 110 genes, of which 76 are protein-coding genes, 30 are tRNA genes, and four are rRNA genes. Fourteen genes contain single introns and one gene has two introns. Three evolutionary hotspot spacer regions—atpB~rbcL, rps16~rps3, and rpl32~trnL-UAG—were recognized among six analyzed Zoysia species. The high divergences in the atpB~rbcL spacer and rpl16~rpl3 region are primarily due to the differences in base substitutions and indels. In contrast, the high divergence between rpl32~trnL-UAG spacers is due to a small inversion with a pair of 22 bp stem and an 11 bp loop. Simple sequence repeats (SSRs) were identified in 59 different locations in Z. japonica, 63 in Z. sinica, 62 in Z. macrostachya, and 63 in Z. tenuifolia plastomes. Phylogenetic analysis showed that the Zoysia (Zoysiinae) forms a monophyletic group, which is sister to Sporobolus (Sporobolinae), with 100% bootstrap support. Within the Zoysia clade, the relationship of (Z. sinica, Z japonica), (Z. tenuifolia, Z. matrella), (Z. macrostachya, Z. macrantha) was suggested.


Sign in / Sign up

Export Citation Format

Share Document