scholarly journals Effect of Escherichia coli Morphogene bolA on Biofilms

2004 ◽  
Vol 70 (9) ◽  
pp. 5682-5684 ◽  
Author(s):  
Helena L. A. Vieira ◽  
Patrick Freire ◽  
Cecília M. Arraiano

ABSTRACT Biofilm physiology is established under a low growth rate. The morphogene bolA is mostly expressed under stress conditions or in stationary phase, suggesting that bolA could be implicated in biofilm development. In order to verify this hypothesis, we tested the effect of bolA on biofilm formation. Overexpression of bolA induces biofilm development, while bolA deletion decreases biofilms.

Author(s):  
M. J. A. Mbarga ◽  
I. V. Podoprigora ◽  
E. G. Volina ◽  
A. V. Ermolaev ◽  
L. A. Smolyakova

Introduction: It is already well known that the exposure of certain bacteria, pathogenic or not, to antimicrobials is likely to increase their virulence and induce the development of direct or cross resistance to antimicrobials, but there is almost no information available regarding probiotics. Aim: To assess the changes induced in susceptibility to antibiotics, biofilm formation, growth rate and relative pathogenicity in the probiotic Escherichia coli M17 (EC-M17) after long exposure to antimicrobials namely ampicillin, kanamycin, cefazolin and silver nanoparticles (AgNPs). Methods: After determining the minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) of the 4 antimicrobials above-mentioned by the microdilution method, EC-M17 was exposed to increasing subinhibitory doses ranging from MIC/8 to MIC for 8 days. The susceptibility to antibiotics of the mutants obtained was assessed by the Kirby Bauer disc diffusion method, biofilm formation by the Congo red agar method and with crystal violet bacterial attachment assay, and relative pathogenicity was assessed using a Galleria melonella waxworm model. Results: Exposure to antimicrobials induces noticeable changes in EC-M17. The highest adaptation to antimicrobials was observed on AgNPs with 8-fold increase in MIC and 16-fold increase in MBC of AgNPs. EC-M17 exposed to ampicillin, kanamycin and silver nanoparticles became resistant to ampicillin, ceftazidime, ceftazidime/clavulanate and tetracycline while exposure to cefazolin induced a significant decrease in sensitivity to tetracycline and ampicillin and resistance to ceftazidime/clavulanate and ceftazidime. The strain exposed to ampicillin was the only one to produce more biofilm than the control strain and except the EC-M17 exposed to cefazolin, all other EC-M17 strains were more pathogenic on G. melonella model than the control. Conclusion: Data in this investigation suggest that repeated exposure of the probiotic EC-M17 to antimicrobials may induce changes in antimicrobials susceptibility, biofilm formation, growth rate, and relative pathogenicity. Therefore, as far as possible, the probiotic E. coli M17 should not be used in combination with antibiotics and further investigations are required to expand similar work on more probiotics in order to avoid resistance build-up which might be transmitted by horizontal transfer.


2003 ◽  
Vol 185 (18) ◽  
pp. 5632-5638 ◽  
Author(s):  
Konstantin Agladze ◽  
Debra Jackson ◽  
Tony Romeo

ABSTRACT The complex architecture of bacterial biofilms inevitably raises the question of their design. Microstructure of developing Escherichia coli biofilms was analyzed under static and laminar flow conditions. Cell attachment during early biofilm formation exhibited periodic density patterns that persisted during development. Several models for the origination of biofilm microstructure are considered, including an activator-inhibitor or Turing model.


2018 ◽  
Vol 85 (4) ◽  
Author(s):  
Sarah Forbes ◽  
Nicola Morgan ◽  
Gavin J. Humphreys ◽  
Alejandro Amézquita ◽  
Hitesh Mistry ◽  
...  

ABSTRACTAssessing the risk of resistance associated with biocide exposure commonly involves exposing microorganisms to biocides at concentrations close to the MIC. With the aim of representing exposure to environmental biocide residues,Escherichia coliMG1655 was grown for 20 passages in the presence or absence of benzalkonium chloride (BAC) at 100 ng/liter and 1,000 ng/liter (0.0002% and 0.002% of the MIC, respectively). BAC susceptibility, planktonic growth rates, motility, and biofilm formation were assessed, and differentially expressed genes were determined via transcriptome sequencing. Planktonic growth rate and biofilm formation were significantly reduced (P< 0.001) following BAC adaptation, while BAC minimum bactericidal concentration increased 2-fold. Transcriptomic analysis identified 289 upregulated and 391 downregulated genes after long-term BAC adaptation compared with the respective control organism passaged in BAC-free medium. When the BAC-adapted bacterium was grown in BAC-free medium, 1,052 genes were upregulated and 753 were downregulated. Repeated passage solely in biocide-free medium resulted in 460 upregulated and 476 downregulated genes compared with unexposed bacteria. Long-term exposure to environmentally relevant BAC concentrations increased the expression of genes associated with efflux and reduced the expression of genes associated with outer-membrane porins, motility, and chemotaxis. This was manifested phenotypically through the loss of function (motility). Repeated passage in a BAC-free environment resulted in the upregulation of multiple respiration-associated genes, which was reflected by increased growth rate. In summary, repeated exposure ofE. colito BAC residues resulted in significant alterations in global gene expression that were associated with minor decreases in biocide susceptibility, reductions in growth rate and biofilm formation, and loss of motility.IMPORTANCEExposure to very low concentrations of biocides in the environment is a poorly understood risk factor for antimicrobial resistance. Repeated exposure to trace levels of the biocide benzalkonium chloride (BAC) resulted in loss of function (motility) and a general reduction in bacterial fitness but relatively minor decreases in susceptibility. These changes were accompanied by widespread changes in theEscherichia colitranscriptome. These results demonstrate the importance of including phenotypic characterization in studies designed to assess the risks of biocide exposure.


2002 ◽  
Vol 184 (18) ◽  
pp. 5130-5140 ◽  
Author(s):  
Kazushi Suzuki ◽  
Xin Wang ◽  
Thomas Weilbacher ◽  
Anna-Karin Pernestig ◽  
Öjar Melefors ◽  
...  

ABSTRACT The global regulator CsrA (carbon storage regulator) is an RNA binding protein that coordinates central carbon metabolism, activates flagellum biosynthesis and motility, and represses biofilm formation in Escherichia coli. CsrA activity is antagonized by the untranslated RNA CsrB, to which it binds and forms a globular ribonucleoprotein complex. CsrA indirectly activates csrB transcription, in an apparent autoregulatory mechanism. In the present study, we elucidate the intermediate regulatory circuitry of this system. Mutations affecting the BarA/UvrY two-component signal transduction system decreased csrB transcription but did not affect csrA′-′lacZ expression. The uvrY defect was severalfold more severe than that of barA. Both csrA and uvrY were required for optimal barA expression. The latter observation suggests an autoregulatory loop for UvrY. Ectopic expression of uvrY suppressed the csrB-lacZ expression defects caused by uvrY, csrA, or barA mutations; csrA suppressed csrA or barA defects; and barA complemented only the barA mutation. Purified UvrY protein stimulated csrB-lacZ expression approximately sixfold in S-30 transcription-translation reactions, revealing a direct effect of UvrY on csrB transcription. Disruption of sdiA, which encodes a LuxR homologue, decreased the expression of uvrY′-′lacZ and csrB-lacZ fusions but did not affect csrA′-′lacZ. The BarA/UvrY system activated biofilm formation. Ectopic expression of uvrY stimulated biofilm formation by a csrB-null mutant, indicative of a CsrB-independent role for UvrY in biofilm development. Collectively, these results demonstrate that uvrY resides downstream from csrA in a signaling pathway for csrB and that CsrA stimulates UvrY-dependent activation of csrB expression by BarA-dependent and -independent mechanisms.


2009 ◽  
Vol 53 (10) ◽  
pp. 4357-4367 ◽  
Author(s):  
Timothy J. Opperman ◽  
Steven M. Kwasny ◽  
John D. Williams ◽  
Atiyya R. Khan ◽  
Norton P. Peet ◽  
...  

ABSTRACT Staphylococcus epidermidis and Staphylococcus aureus are the leading causative agents of indwelling medical device infections because of their ability to form biofilms on artificial surfaces. Here we describe the antibiofilm activity of a class of small molecules, the aryl rhodanines, which specifically inhibit biofilm formation of S. aureus, S. epidermidis, Enterococcus faecalis, E. faecium, and E. gallinarum but not the gram-negative species Pseudomonas aeruginosa or Escherichia coli. The aryl rhodanines do not exhibit antibacterial activity against any of the bacterial strains tested and are not cytotoxic against HeLa cells. Preliminary mechanism-of-action studies revealed that the aryl rhodanines specifically inhibit the early stages of biofilm development by preventing attachment of the bacteria to surfaces.


2006 ◽  
Vol 188 (11) ◽  
pp. 3952-3961 ◽  
Author(s):  
Cristiano G. Moreira ◽  
Kelli Palmer ◽  
Marvin Whiteley ◽  
Marcelo P. Sircili ◽  
Luiz R. Trabulsi ◽  
...  

ABSTRACT Microcolony formation is one of the initial steps in biofilm development, and in enteropathogenic Escherichia coli (EPEC) it is mediated by several adhesins, including the bundle-forming pilus (BFP) and the EspA filament. Here we report that EPEC forms biofilms on plastic under static conditions and a flowthrough continuous culture system. The abilities of several EPEC isogenic mutants to form biofilms were assessed. Adhesins such as BFP and EspA, important in microcolony formation on epithelial cells, are also involved in bacterial aggregation during biofilm formation on abiotic surfaces. Mutants that do not express BFP or EspA form more-diffuse biofilms than does the wild type. We also determined, using gfp transcriptional fusions, that, consistent with the role of these adhesins in biofilms, the genes encoding BFP and EspA are expressed during biofilm formation. Finally, expression of espA is controlled by a quorum-sensing (QS) regulatory mechanism, and the EPEC qseA QS mutant also forms altered biofilms, suggesting that this signaling mechanism plays an important role in EPEC biofilm development. Taken together, these studies allowed us to propose a model of EPEC biofilm formation.


2019 ◽  
Author(s):  
Jennifer Greenwich ◽  
Alicyn Reverdy ◽  
Kevin Gozzi ◽  
Grace Di Cecco ◽  
Tommy Tashjian ◽  
...  

ABSTRACTBiofilm development inBacillus subtilisis regulated at multiple levels. While a number of known signals that trigger biofilm formation do so through the activation of one or more sensory histidine kinases, it was recently discovered that biofilm activation is also coordinated by sensing intracellular metabolic signals, including serine starvation. Serine starvation causes ribosomes to pause on specific serine codons, leading to a decrease in the translation rate ofsinR, which encodes a master repressor for biofilm matrix genes, and ultimately biofilm induction. How serine levels change in different growth stages, howB. subtilisregulates intracellular serine levels in response to metabolic status, and how serine starvation triggers ribosomes to pause on selective serine codons remain unknown. Here we show that serine levels decrease as cells enter stationary phase and that unlike most other amino acid biosynthesis genes, expression of serine biosynthesis genes decreases upon the transition into stationary phase. Deletion of the gene for a serine deaminase responsible for converting serine to pyruvate led to a delay in biofilm formation, further supporting the idea that serine levels are a critical intracellular signal for biofilm activation. Finally, we show that levels of all five serine tRNA isoacceptors are decreased in stationary phase compared to exponential phase. Interestingly, the three isoacceptors recognizing UCN serine codons are reduced to a much greater extent than the two that recognize AGC and AGU serine codons. Our findings provide evidence for a link between serine homeostasis and biofilm development inB. subtilis.IMPORTANCEInBacillus subtilis, biofilm formation is triggered in response to various environmental and cellular signals. It was previously proposed that serine limitation acts as a proxy for nutrient status and triggers biofilm formation at the onset of biofilm entry through a novel signaling mechanism caused by global ribosome pausing on selective serine codons. In this study, we revealed that serine levels decrease at the biofilm entry due to catabolite control and a shunt mechanism. We also show that levels of five serine tRNA isoacceptors are differentially decreased in stationary phase compared to exponential phase; three isoacceptors recognizing UCN serine codons are reduced much greater than the two recognizing AGC and AGU codons. This indicates a possible mechanism for selective ribosome pausing.


Urology ◽  
2006 ◽  
Vol 68 (5) ◽  
pp. 942-946 ◽  
Author(s):  
Hikmet Koseoglu ◽  
Guven Aslan ◽  
Nuran Esen ◽  
Bilge Hakan Sen ◽  
Huseyin Coban

Microbiology ◽  
2005 ◽  
Vol 151 (10) ◽  
pp. 3287-3298 ◽  
Author(s):  
Caroline Blumer ◽  
Alexandra Kleefeld ◽  
Daniela Lehnen ◽  
Margit Heintz ◽  
Ulrich Dobrindt ◽  
...  

Type 1 fimbriae of Escherichia coli facilitate attachment to the host mucosa and promote biofilm formation on abiotic surfaces. The transcriptional regulator LrhA, which is known as a repressor of flagellar, motility and chemotaxis genes, regulates biofilm formation and expression of type 1 fimbriae. Whole-genome expression profiling revealed that inactivation of lrhA results in an increased expression of structural components of type 1 fimbriae. In vitro, LrhA bound to the promoter regions of the two fim recombinases (FimB and FimE) that catalyse the inversion of the fimA promoter, and to the invertible element itself. Translational lacZ fusions with these genes and quantification of fimE transcript levels by real-time PCR showed that LrhA influences type 1 fimbrial phase variation, primarily via activation of FimE, which is required for the ON-to-OFF transition of the fim switch. Enhanced type 1 fimbrial expression as a result of lrhA disruption was confirmed by mannose-sensitive agglutination of yeast cells. Biofilm formation was stimulated by lrhA inactivation and completely suppressed upon LrhA overproduction. The effects of LrhA on biofilm formation were exerted via the changed levels of surface molecules, most probably both flagella and type 1 fimbriae. Together, the data show a role for LrhA as a repressor of type 1 fimbrial expression, and thus as a regulator of the initial stages of biofilm development and, presumably, bacterial adherence to epithelial host cells also.


Microbiology ◽  
2010 ◽  
Vol 156 (8) ◽  
pp. 2408-2417 ◽  
Author(s):  
Timo A. Lehti ◽  
Philippe Bauchart ◽  
Johanna Heikkinen ◽  
Jörg Hacker ◽  
Timo K. Korhonen ◽  
...  

The mat (or ecp) fimbrial operon is ubiquitous and conserved in Escherichia coli, but its functions remain poorly described. In routine growth media newborn meningitis isolates of E. coli express the meningitis-associated and temperature-regulated (Mat) fimbria, also termed E. coli common pilus (ECP), at 20 °C, and here we show that the six-gene (matABCDEF)-encoded Mat fimbria is needed for temperature-dependent biofilm formation on abiotic surfaces. The matBCDEF deletion mutant of meningitis E. coli IHE 3034 was defective in an early stage of biofilm development and consequently unable to establish a detectable biofilm, contrasting with IHE 3034 derivatives deleted for flagella, type 1 fimbriae or S-fimbriae, which retained the wild-type biofilm phenotype. Furthermore, induced production of Mat fimbriae from expression plasmids enabled biofilm-deficient E. coli K-12 cells to form biofilm at 20 °C. No biofilm was detected with IHE 3034 or MG1655 strains grown at 37 °C. The surface expression of Mat fimbriae and the frequency of Mat-positive cells in the IHE 3034 population from 20 °C were high and remained unaltered during the transition from planktonic to biofilm growth and within the matured biofilm community. Considering the prevalence of the highly conserved mat locus in E. coli genomes, we hypothesize that Mat fimbria-mediated biofilm formation is an ancestral characteristic of E. coli.


Sign in / Sign up

Export Citation Format

Share Document