scholarly journals Analysis of Fluorescent Protein Expression in Transformants of Rickettsia monacensis, an Obligate Intracellular Tick Symbiont

2005 ◽  
Vol 71 (4) ◽  
pp. 2095-2105 ◽  
Author(s):  
Gerald D. Baldridge ◽  
Nicole Burkhardt ◽  
Michael J. Herron ◽  
Timothy J. Kurtti ◽  
Ulrike G. Munderloh

ABSTRACT We developed and applied transposon-based transformation vectors for molecular manipulation and analysis of spotted fever group rickettsiae, which are obligate intracellular bacteria that infect ticks and, in some cases, mammals. Using the Epicentre EZ::TN transposon system, we designed transposons for simultaneous expression of a reporter gene and a chloramphenicol acetyltransferase (CAT) resistance marker. Transposomes (transposon-transposase complexes) were electroporated into Rickettsia monacensis, a rickettsial symbiont isolated from the tick Ixodes ricinus. Each transposon contained an expression cassette consisting of the rickettsial ompA promoter and a green fluorescent protein (GFP) reporter gene (GFPuv) or the ompB promoter and a red fluorescent protein reporter gene (DsRed2), followed by the ompA transcription terminator and a second ompA promoter CAT gene cassette. Selection with chloramphenicol gave rise to rickettsial populations with chromosomally integrated single-copy transposons as determined by PCR, Southern blotting, and sequence analysis. Reverse transcription-PCR and Northern blots demonstrated transcription of all three genes. GFPuv transformant rickettsiae exhibited strong fluorescence in individual cells, but DsRed2 transformants did not. Western blots confirmed expression of GFPuv in R. monacensis and in Escherichia coli, but DsRed2 was expressed only in E. coli. The DsRed2 gene, but not the GFPuv gene, contains many GC-rich amino acid codons that are rare in the preferred codon suite of rickettsiae, possibly explaining the failure to express DsRed2 protein in R. monacensis. We demonstrated that our vectors provide a means to study rickettsia-host cell interactions by visualizing GFPuv-fluorescent R. monacensis associated with actin tails in tick host cells.

2018 ◽  
Author(s):  
Rebecca L. Lamason ◽  
Natasha M. Kafai ◽  
Matthew D. Welch

AbstractThe rickettsiae are obligate intracellular alphaproteobacteria that exhibit a complex infectious life cycle in both arthropod and mammalian hosts. As obligate intracellular bacteria,Rickettsiaare highly adapted to living inside a variety of host cells, including vascular endothelial cells during mammalian infection. Although it is assumed that the rickettsiae produce numerous virulence factors that usurp or disrupt various host cell pathways, they have been challenging to genetically manipulate to identify the key bacterial factors that contribute to infection. Motivated to overcome this challenge, we sought to expand the repertoire of available rickettsial loss-of-function mutants, using an improvedmariner-based transposon mutagenesis scheme. Here, we present the isolation of over 100 transposon mutants in the spotted fever group speciesRickettsia parkeri. These mutants targeted genes implicated in a variety of pathways, including bacterial replication and metabolism, hypothetical proteins, the type IV secretion system, as well as factors with previously established roles in host cell interactions and pathogenesis. Given the need to identify critical virulence factors, forward genetic screens such as this will provide an excellent platform to more directly investigate rickettsial biology and pathogenesis.


Author(s):  
U. G. Munderloh ◽  
S. F. Hayes ◽  
J. Cummings ◽  
T. J. Kurtti

Spotted fever group (SFG) rickettsiae are obligate intracellular prokaryotes that include tick-borne pathogens of animals and man as well as organisms that live in symbiotic association with their tick hosts. A striking feature of the behavior of pathogenic rickettsiae in the vertebrate is their ability to quickly disseminate between cells from the original site of entry shortly after infection, and before severe lesions are detected. Similarly, ticks become systemically infected with SFG rickettsiae, indicating that an efficient mechanism of dispersal also exists in the vector. This is accomplished despite the fact that rickettsiae are not motile.Kadurugamuwa et al. (1991) have used light and electron microscopy to show that Shigella flexneri utilize host cytoskeletal components to travel through cytoplasmic extensions and penetrate into neighboring cells. Using mammalian cells cultured in vitro, Heinzen et al. (1993) have demonstrated that SFG rickettsiae cause host cell actin polymerization at one rickettsial pole causing them to be propelled through the cytoplasm, and to transfer rapidly from cell to cell.


Parasite ◽  
2019 ◽  
Vol 26 ◽  
pp. 20 ◽  
Author(s):  
Toufic Akl ◽  
Gilles Bourgoin ◽  
Marie-Line Souq ◽  
Joël Appolinaire ◽  
Marie-Thérèse Poirel ◽  
...  

Ticks are important vectors of several human and animal pathogens. In this study, we estimated the prevalence of important tick-borne infections in questing ticks from an area in Southwestern France (Hautes-Pyrénées) inhabited by Pyrenean chamois (Rupicapra pyrenaica pyrenaica) experiencing high tick burden. We examined adult and nymph ticks collected by the flag dragging method from 8 to 15 sites in the Pic de Bazès during the years 2009, 2011, 2013 and 2015. PCR assays were conducted on selected ticks for the detection of Borrelia burgdorferi s.l., Babesia spp., Rickettsia spp., spotted fever group (SFG) Rickettsia and Anaplasma phagocytophilum. Randomly selected positive samples were submitted for sequence analysis. A total of 1971 questing ticks were collected including 95 males, 101 females and 1775 nymphs. All collected ticks were identified as Ixodes ricinus. Among them, 696 ticks were selected for pathogen detection and overall prevalence was 8.4% for B. burgdorferi s.l.; 0.4% for Babesia spp.; 6.1% for A. phagocytophilum; 17.6% for Rickettsia spp.; and 8.1% for SFG Rickettsia. Among the sequenced pathogens, we detected in this population of ticks the presence of Babesia sp. EU1 and Rickettsia helvetica, as well as Rickettsia monacensis for the first time in France. The detection of these pathogens in the Pic de Bazès highlights the potential infection risks for visitors to this area and the Pyrenean chamois population.


2020 ◽  
pp. 1230-1251
Author(s):  
Karolina Griffiths ◽  
Carole Eldin ◽  
Didier Raoult ◽  
Philippe Parola

Rickettsioses are mild to life-threatening zoonoses caused by obligate intracellular bacteria of the order Rickettsiales (family Rickettsiaceae). Arthropods, including ticks, fleas, and mites, are implicated as their vectors, reservoirs, or amplifiers. With an increasing number of new pathogens and recognition of new pathogenicity and affected geographical areas over the past few decades, there is a better understanding of the scope and importance of these pathogens, particularly as a paradigm to understanding emerging and remerging infections. The taxonomy has undergone numerous changes, with now three main groups classified as rickettsioses according to morphological, antigenic and metabolic characteristics: (1) Rickettsioses due to the bacteria of the genus Rickettsia, including the spotted fever group, typhus groups (Rickettsiaceae), (2) Ehrlichioses and Anaplasmoses due to bacteria of the Anaplasmataceae and (3) scrub typhus due to Orientia tsutsugamushi.


2002 ◽  
Vol 68 (9) ◽  
pp. 4559-4566 ◽  
Author(s):  
Jason A. Simser ◽  
Ann T. Palmer ◽  
Volker Fingerle ◽  
Bettina Wilske ◽  
Timothy J. Kurtti ◽  
...  

ABSTRACT We describe the isolation and characterization of Rickettsia monacensis sp. nov. (type strain, IrR/MunichT) from an Ixodes ricinus tick collected in a city park, the English Garden in Munich, Germany. Rickettsiae were propagated in vitro with Ixodes scapularis cell line ISE6. BLAST analysis of the 16S rRNA, the citrate synthase, and the partial 190-kDa rickettsial outer membrane protein A (rOmpA) gene sequences demonstrated that the isolate was a spotted fever group (SFG) rickettsia closely related to several yet-to-be-cultivated rickettsiae associated with I. ricinus. Phylogenetic analysis of partial rompA sequences demonstrated that the isolate was genotypically different from other validated species of SFG rickettsiae. R. monacensis also replicated in cell lines derived from the ticks I. ricinus (IRE11) and Dermacentor andersoni (DAE100) and in the mammalian cell lines L-929 and Vero, causing cell lysis. Transmission electron microscopy of infected ISE6 and Vero cells showed rickettsiae within the cytoplasm, pseudopodia, nuclei, and vacuoles. Hamsters inoculated with R. monacensis had immunoglobulin G antibody titers as high as 1:16,384, as determined by indirect immunofluorescence assay. Western blot analyses demonstrated that the hamster sera cross-reacted with peptides from other phylogenetically distinct rickettsiae, including rOmpA. R. monacensis induced actin tails in both tick and mammalian cells similar to those reported for R. rickettsii. R. monacensis joins a growing list of SFG rickettsiae that colonize ticks but whose infectivity and pathogenicity for vertebrates are unknown.


Diagnostics ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 897
Author(s):  
Lavel Chinyama Moonga ◽  
Kyoko Hayashida ◽  
Naoko Kawai ◽  
Ryo Nakao ◽  
Chihiro Sugimoto ◽  
...  

Spotted fever group (SFG) rickettsiae causes febrile illness in humans worldwide. Since SFG rickettsiosis’s clinical presentation is nonspecific, it is frequently misdiagnosed as other febrile diseases, especially malaria, and complicates proper treatment. Aiming at rapid, simple, and simultaneous detection of SFG Rickettsia spp. and Plasmodium spp., we developed a novel multiple pathogen detection system by combining a loop-mediated isothermal amplification (LAMP) method and dipstick DNA chromatography technology. Two primer sets detecting SFG Rickettsia spp. and Plasmodium spp. were mixed, and amplified products were visualized by hybridizing to dipstick DNA chromatography. The multiplex LAMP with dipstick DNA chromatography distinguished amplified Rickettsia and Plasmodium targeted genes simultaneously. The determined sensitivity using synthetic nucleotides was 1000 copies per reaction for mixed Rickettsia and Plasmodium genes. When genomic DNA from in vitro cultured organisms was used, the sensitivity was 100 and 10 genome equivalents per reaction for Rickettsia monacensis and Plasmodium falciparum, respectively. Although further improvement will be required for more sensitive detection, our developed simultaneous diagnosis technique will contribute to the differential diagnosis of undifferentiated febrile illness caused by either SFG Rickettsia spp. or Plasmodium spp. in resource-limited endemic areas. Importantly, this scheme is potentially versatile for the simultaneous detection of diverse infectious diseases.


2005 ◽  
Vol 187 (16) ◽  
pp. 5719-5722 ◽  
Author(s):  
Lonnie O. Driskell ◽  
Aimee M. Tucker ◽  
Herbert H. Winkler ◽  
David O. Wood

ABSTRACT The obligate intracellular bacterium Rickettsia prowazekii has recently been shown to transport the essential metabolite S-adenosylmethionine (SAM). The existence of such a transporter would suggest that the metK gene, coding for the enzyme that synthesizes SAM, is unnecessary for rickettsial growth. Genome sequencing has revealed that this is the case for the metK genes of the spotted fever group and the Madrid E strain of R. prowazekii, which contain recognizable inactivating mutations. However, several strains of the typhus group rickettsiae possess metK genes lacking obvious mutations. In order to determine if these genes code for a product that retains MAT function, an Escherichia coli metK deletion mutant was constructed in which individual rickettsial metK genes were tested for the ability to complement the methionine adenosyltransferase deficiency. Both the R. prowazekii Breinl and R. typhi Wilmington metK genes complemented at a level comparable to that of an E. coli metK control, demonstrating that the typhus group rickettsiae have the capability of synthesizing as well as transporting SAM. However, the appearance of mutations that affect the function of the metK gene products (a stop codon in the Madrid E strain and a 6-bp deletion in the Breinl strain) provides experimental support for the hypothesis that these typhus group genes, like the more degenerate spotted fever group orthologs, are in the process of gene degradation.


2010 ◽  
Vol 78 (5) ◽  
pp. 1895-1904 ◽  
Author(s):  
Sean P. Riley ◽  
Kenneth C. Goh ◽  
Timothy M. Hermanas ◽  
Marissa M. Cardwell ◽  
Yvonne G. Y. Chan ◽  
...  

ABSTRACT The pathogenesis of spotted fever group (SFG) Rickettsia species, including R. conorii and R. rickettsii, is acutely dependent on adherence to and invasion of host cells, including cells of the mammalian endothelial system. Bioinformatic analyses of several rickettsia genomes revealed the presence of a cohort of genes designated sca genes that are predicted to encode proteins with homology to autotransporter proteins of Gram-negative bacteria. Previous work demonstrated that three members of this family, rOmpA (Sca0), Sca2, and rOmpB (Sca5) are involved in the interaction with mammalian cells; however, very little was known about the function of other conserved rickettsial Sca proteins. Here we demonstrate that sca1, a gene present in nearly all SFG rickettsia genomes, is actively transcribed and expressed in R. conorii cells. Alignment of Sca1 sequences from geographically diverse SFG Rickettsia species showed that there are high degrees of sequence identity and conservation of these sequences, suggesting that Sca1 may have a conserved function. Using a heterologous expression system, we demonstrated that production of R. conorii Sca1 in the Escherichia coli outer membrane is sufficient to mediate attachment to but not invasion of a panel of cultured mammalian epithelial and endothelial cells. Furthermore, preincubation of a recombinant Sca1 peptide with host cells blocked R. conorii cell association. Together, these results demonstrate that attachment to mammalian cells can be uncoupled from the entry process and that Sca1 is involved in the adherence of R. conorii to host cells.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0252992
Author(s):  
Mi Seon Bang ◽  
Choon-Mee Kim ◽  
Sang-Hyun Pyun ◽  
Dong-Min Kim ◽  
Na Ra Yun

In this study, we investigated the presence of tick-borne pathogens in ticks removed from tick-bitten humans in the southwestern provinces of the Republic of Korea (ROK). We identified 33 ticks from three tick species, namely Amblyomma testudinarium (60.6%), Haemaphysalis longicornis (27.3%), and Ixodes nipponensis (12.1%) in order of occurrence via morphology and 16S rDNA-targeting polymerase chain reaction (PCR). Tick-borne pathogens were detected in 16 ticks using pathogen-specific PCR. From the results, 12 ticks (36.4%) tested positive for spotted fever group (SFG) Rickettsia: Rickettsia monacensis (1/12), R. tamurae (8/12), and Candidatus Rickettsia jingxinensis (3/12). Three ticks (9.1%) were positive for Anaplasma phagocytophilum. In addition, three ticks (9.1%) tested positive for Babesia gibsoni (1/3) and B. microti (2/3). In conclusion, we identified three tick species; the most common species was A. testudinarium, followed by H. longicornis and I. nipponensis. SFG Rickettsia, A. phagocytophilum, and Babesia spp. were the most frequently detected pathogens in ticks removed from tick-bitten humans. To our knowledge, this is the first report of R. tamurae and Ca. R. jingxinensis detection in Korea. The present results will contribute to the understanding of tick-borne infections in animals and humans in the ROK.


Sign in / Sign up

Export Citation Format

Share Document