scholarly journals Identification and Characterization of Putative Virulence Genes and Gene Clusters in Aeromonas hydrophila PPD134/91

2005 ◽  
Vol 71 (8) ◽  
pp. 4469-4477 ◽  
Author(s):  
H. B. Yu ◽  
Y. L. Zhang ◽  
Y. L. Lau ◽  
F. Yao ◽  
S. Vilches ◽  
...  

ABSTRACT Aeromonas hydrophila is a gram-negative opportunistic pathogen of animals and humans. The pathogenesis of A. hydrophila is multifactorial. Genomic subtraction and markers of genomic islands (GIs) were used to identify putative virulence genes in A. hydrophila PPD134/91. Two rounds of genomic subtraction led to the identification of 22 unique DNA fragments encoding 19 putative virulence factors and seven new open reading frames, which are commonly present in the eight virulence strains examined. In addition, four GIs were found, including O-antigen, capsule, phage-associated, and type III secretion system (TTSS) gene clusters. These putative virulence genes and gene clusters were positioned on a physical map of A. hydrophila PPD134/91 to determine their genetic organization in this bacterium. Further in vivo study of insertion and deletion mutants showed that the TTSS may be one of the important virulence factors in A. hydrophila pathogenesis. Furthermore, deletions of multiple virulence factors such as S-layer, serine protease, and metalloprotease also increased the 50% lethal dose to the same level as the TTSS mutation (about 1 log) in a blue gourami infection model. This observation sheds light on the multifactorial and concerted nature of pathogenicity in A. hydrophila. The large number of putative virulence genes identified in this study will form the basis for further investigation of this emerging pathogen and help to develop effective vaccines, diagnostics, and novel therapeutics.

2012 ◽  
Vol 32 (8) ◽  
pp. 701-706 ◽  
Author(s):  
Samira T.L. Oliveira ◽  
Gisele Veneroni-Gouveia ◽  
Mateus M. Costa

Multiple factors can be involved in the virulence processes of Aeromonas hydrophila. The objective of the present paper was to verify the presence of aerolysin, hidrolipase, elastase and lipase virulence genes through the polymerase chain reaction (PCR) in A. hydrophila isolates obtained from fish of the São Francisco River Valley, and to evaluate virulence according to the presence of these genes in Nile tilapia fingerlings. One hundred and fourteen isolates from the bacteria were used. DNA was heat extracted and PCR undertaken using specific primers described in the literature. For in vivo tests Nile tilapia fingerlings were used. From the PCR tests, negative isolates for all genes tested were selected, positive isolates for two genes (aerolysin and elastase) and positive for the four genes tested. These were inoculated at a concentration of 10(8) UFC/ml into the tilapias, considered as treatments; another group of animals was used as control (with inoculation of saline solution). In all, 12 distinct standards regarding the presence of virulence factors in isolates from A. hydrophila, were observed. Of the 114 isolates analyzed, 100 (87.72%) presented at least one of the virulence factors under study. The virulence factors were widely distributed among the A. hydrophila isolates. Aerolysin was the most frequent virulence factor present in the isolates analyzed. A. hydrophila led to the mortality of the Nile tilapia fingerlings, regardless of the absence or quantity of virulence genes tested.


2021 ◽  
Author(s):  
Atmika Paudel ◽  
Yoshikazu Furuta ◽  
Hideaki Higashi

Bacillus anthracis is an obligate pathogen and a causative agent of anthrax. Its major virulence factors are plasmid-coded; however, recent studies have revealed chromosome-encoded virulence factors, indicating that the current understanding of its virulence mechanism is elusive and needs further investigation. In this study, we established a silkworm (Bombyx mori) infection model of B. anthracis Sterne. We showed that silkworms were killed by B. anthracis and cured of the infection when administered with antibiotics. We quantitatively determined the lethal dose of the bacteria that kills 50% larvae and effective doses of antibiotics that cure 50% infected larvae. Furthermore, we demonstrated that B. anthracis mutants with disruption in virulence genes such as pagA, lef, and atxA had attenuated silkworm-killing ability and reduced colonization in silkworm hemolymph. The silkworm infection model established in this study can be utilized in large-scale infection experiments to identify novel virulence determinants and develop novel therapeutic options against B. anthracis infections.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1497
Author(s):  
Pansong Zhang ◽  
Qiao Guo ◽  
Zhihua Wei ◽  
Qin Yang ◽  
Zisheng Guo ◽  
...  

Therapeutics that target the virulence of pathogens rather than their viability offer a promising alternative for treating infectious diseases and circumventing antibiotic resistance. In this study, we searched for anti-virulence compounds against Pseudomonas aeruginosa from Chinese herbs and investigated baicalin from Scutellariae radix as such an active anti-virulence compound. The effect of baicalin on a range of important virulence factors in P. aeruginosa was assessed using luxCDABE-based reporters and by phenotypical assays. The molecular mechanism of the virulence inhibition by baicalin was investigated using genetic approaches. The impact of baicalin on P. aeruginosa pathogenicity was evaluated by both in vitro assays and in vivo animal models. The results show that baicalin diminished a plenty of important virulence factors in P. aeruginosa, including the Type III secretion system (T3SS). Baicalin treatment reduced the cellular toxicity of P. aeruginosa on the mammalian cells and attenuated in vivo pathogenicity in a Drosophila melanogaster infection model. In a rat pulmonary infection model, baicalin significantly reduced the severity of lung pathology and accelerated lung bacterial clearance. The PqsR of the Pseudomonas quinolone signal (PQS) system was found to be required for baicalin’s impact on T3SS. These findings indicate that baicalin is a promising therapeutic candidate for treating P. aeruginosa infections.


Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 631
Author(s):  
Mengfan Peng ◽  
Wentao Tong ◽  
Zhen Zhao ◽  
Ling Xiao ◽  
Zhaoyue Wang ◽  
...  

In this experiment, the quorum quenching gene ytnP of Bacillus licheniformis T-1 was cloned and expressed, and the effect against infection of Aeromonas hydrophila ATCC 7966 was evaluated in vitro and vivo. The BLAST results revealed a 99% sequence identity between the ytnP gene of T-1 and its homolog in B.subtilis sub sp. BSP1, and the dendroGram showed that the similarity in the YtnP protein in T-1 was 100% in comparison with B.subtilis 3610, which was categorized as the Aidc cluster of the MBL family. The AHL lactonase activity of the purified YtnP was detected as 1.097 ± 0.7 U/mL with C6-HSL as the substrate. Otherwise, purified YtnP protein could significantly inhibit the biofilm formation of A.hydrophila ATCC 7966 with an inhibition rate of 68%. The MIC of thiamphenicol and doxycycline hydrochloride against A. hydrophila reduced from 4 μg/mL and 0.5 μg/mL to 1 μg/mL and 0.125 μg/mL, respectively, in the presence of YtnP. In addition, YtnP significantly inhibited the expression of five virulence factors hem, ahyB, ast, ep, aerA of A. hydrophila ATCC 7966 as well (p < 0.05). The results of inhibition on virulence showed a time-dependence tendency, while the strongest anti-virulence effects were within 4–24 h. In vivo, when the YtnP protein was co-injected intraperitoneally with A. hydrophila ATCC 7966, it attenuated the pathogenicity of A. hydrophila and the accumulated mortality was 27 ± 4.14% at 96 h, which was significantly lower than the average mortality of 78 ± 2.57% of the Carassius auratus injected with 108 CFU/mL of A. hydrophila ATCC 7966 only (p < 0.001). In conclusion, the AHL lactonase in B. licheniformis T-1 was proven to be YtnP protein and could be developed into an agent against infection of A. hydrophila in aquaculture.


Author(s):  
Chukwuemeka Samson Ahamefule ◽  
Blessing C. Ezeuduji ◽  
James C. Ogbonna ◽  
Anene N. Moneke ◽  
Anthony C. Ike ◽  
...  

The threat burden from pathogenic fungi is universal and increasing with alarming high mortality and morbidity rates from invasive fungal infections. Understanding the virulence factors of these fungi, screening effective antifungal agents and exploring appropriate treatment approaches in in vivo modeling organisms are vital research projects for controlling mycoses. Caenorhabditis elegans has been proven to be a valuable tool in studies of most clinically relevant dimorphic fungi, helping to identify a number of virulence factors and immune-regulators and screen effective antifungal agents without cytotoxic effects. However, little has been achieved and reported with regard to pathogenic filamentous fungi (molds) in the nematode model. In this review, we have summarized the enormous breakthrough of applying a C. elegans infection model for dimorphic fungi studies and the very few reports for filamentous fungi. We have also identified and discussed the challenges in C. elegans-mold modeling applications as well as the possible approaches to conquer these challenges from our practical knowledge in C. elegans-Aspergillus fumigatus model.


2020 ◽  
Author(s):  
Lokender Kumar ◽  
Nathanael Brenner ◽  
John Brice ◽  
Judith Klein-Seetharaman ◽  
Susanta K. Sarkar

ABSTRACTPseudomonas aeruginosa utilizes a chemical social networking system referred to as quorum sensing (QS) to strategically co-ordinate the expression of virulence factors and biofilm formation. Virulence attributes damage the host cells, impair the host immune system, and protect bacterial cells from antibiotic attack. Thus, anti-QS agents may act as novel anti-infective therapeutics to treat P. aeruginosa infections. The present study was performed to evaluate the anti-QS, anti-biofilm, and anti-virulence activity of β-lactam antibiotics (carbapenems and cephalosporins) against P. aeruginosa. The anti-QS activity was quantified using Chromobacterium violaceum CV026 as a QS reporter strain. Our results showed that cephalosporins including cefepime (CP), ceftazidime (CF), and ceftriaxone (CT) exhibited potent anti-QS and anti-virulence activities against P. aeruginosa PAO1. These antibiotics significantly impaired motility phenotypes, decreased pyocyanin production, and reduced the biofilm formation by P. aeruginosa PAO1. In the present study, we studied isogenic QS mutants of PAO1: ΔLasR, ΔRhlR, ΔPqsA, and ΔPqsR and found that the levels of virulence factors of antibiotic-treated PAO1 were comparable to QS mutant strains. Molecular docking predicted high binding affinities of cephalosporins for the ligand-binding pocket of QS receptors (CviR, LasR, and PqsR). In addition, our results showed that the anti-microbial activity of aminoglycosides increased in the presence of sub-inhibitory concentrations (sub-MICs) of CP against P. aeruginosa PAO1. Further, utilizing Caenorhabditis elegans as an animal model for the in vivo anti-virulence effects of antibiotics, cephalosporins showed a significant increase in C. elegans survival by suppressing virulence factor production in P. aeruginosa. Thus, our results indicate that cephalosporins might provide a viable anti-virulence therapy in the treatment of infections caused by multi-drug resistant P. aeruginosa.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Elliot Collins ◽  
Caleb Martin ◽  
Tyler Blomquist ◽  
Katherine Phillips ◽  
Stuart Cantlay ◽  
...  

AbstractInsects are now well recognized as biologically relevant alternative hosts for dozens of mammalian pathogens and they are routinely used in microbial pathogenesis studies. Unfortunately, these models have yet to be incorporated into the drug development pipeline. The purpose of this work was to begin to evaluate the utility of orange spotted (Blaptica dubia) cockroaches in early antibiotic characterization. To determine whether these model hosts could exhibit mortality when infected with bacteria that are pathogenic to humans, we subjected B. dubia roaches to a range of infectious doses of Klebsiella pneumoniae, Escherichia coli, Staphylococcus aureus, and Acinetobacter baumannii to identify the medial lethal dose. These results showed that lethal disease did not develop following infection of high doses of S. aureus, and A. baumannii. However, cockroaches infected with E. coli and K. pneumoniae succumbed to infection (LD50s of 5.82 × 106 and 2.58 × 106 respectively) suggesting that this model may have limitations based on pathogen specificity. However, because these cockroaches were susceptible to infection from E. coli and K. pneumoniae, we used these bacterial strains for subsequent antibiotic characterization studies. These studies suggested that β-lactam antibiotic persistence and dose was associated with reduction of hemolymph bacterial burden. Moreover, our data indicated that the reduction of bacterial CFU was directly due to the drug activity. Altogether, this work suggests that the orange-spotted cockroach infection model provides an alternative in vivo setting from which antibiotic efficacy can be evaluated.


2002 ◽  
Vol 85 (2) ◽  
pp. 516-523 ◽  
Author(s):  
Richard B Raybourne

Abstract A major problem in understanding foodborne listeriosis from both the basic science and regulatory perspectives revolves around the role played by virulence factors of Listeria monocytogenes and how these interact with host susceptibility to result in the observed incidence of disease. From a mechanistic perspective, this problem has been well investigated, and many virulence components of L. monocytogenes have been discovered. Deletion of these genes results in large reductions in virulence functions in vitro and in vivo. The clonal bacteria and genetically identical hosts necessary to solve the riddles associated with virulence mechanisms are not likely to reflect the natural diversity found among wild populations of L. monocytogenes, including those associated with food. These factors contribute to a major dilemma in risk assessment and risk management of foodborne listeriosis: Although low-level L. monocytogenes contamination of certain foods is relatively common, suggesting widespread exposure, illness is overwhelmingly associated with only a relatively small subpopulation (3 of the 13 L. monocytogenes serotypes) and occurs in only a small proportion of susceptible individuals. Virulence testing based on DNA probes for virulence genes is confounded by the widespread distribution of these genes in food isolates. In terms of the distribution of virulence factors among food isolates of L. monocytogenes, only listeriolysin is well characterized, because β-hemolysis is often used to confirm the presence of L. monocytogenes in foods. The presence of other virulence genes such as those involved in host cell invasion and cell-to-cell spread (inIA and actA) among food isolates has not been extensively investigated. How the presence of these components translates into functional virulence as measured in vivo and in vitro is also unknown. Animal studies and cell culture systems show a range of virulence among food isolates of L. monocytogenes. However, clinical isolates included in such studies are not consistently more virulent than food isolates with no known human disease association. Where multiple serotypes or ribotypes are compared, it has been difficult to demonstrate a consistent pattern of increased virulence associated with any subtype(s) in animal or in vitro studies. Development of model systems that adequately reflect the complexity of the host–pathogen relationship remains a challenge.


mSphere ◽  
2016 ◽  
Vol 1 (2) ◽  
Author(s):  
Dalia Denapaite ◽  
Martin Rieger ◽  
Sophie Köndgen ◽  
Reinhold Brückner ◽  
Irma Ochigava ◽  
...  

ABSTRACT Streptococcus pneumoniae is a rare example of a human-pathogenic bacterium among viridans streptococci, which consist of commensal symbionts, such as the close relatives Streptococcus mitis and S. oralis. We have shown that S. oralis can frequently be isolated from primates and a variety of other viridans streptococci as well. Genes and genomic islands which are known pneumococcal virulence factors are present in S. oralis and S. mitis, documenting the widespread occurrence of these compounds, which encode surface and secreted proteins. The frequent occurrence of CRISP-Cas gene clusters and a surprising variation of a set of small noncoding RNAs are factors to be considered in future research to further our understanding of mechanisms involved in the genomic diversity driven by horizontal gene transfer among viridans streptococci. Viridans streptococci were obtained from primates (great apes, rhesus monkeys, and ring-tailed lemurs) held in captivity, as well as from free-living animals (chimpanzees and lemurs) for whom contact with humans is highly restricted. Isolates represented a variety of viridans streptococci, including unknown species. Streptococcus oralis was frequently isolated from samples from great apes. Genotypic methods revealed that most of the strains clustered on separate lineages outside the main cluster of human S. oralis strains. This suggests that S. oralis is part of the commensal flora in higher primates and evolved prior to humans. Many genes described as virulence factors in Streptococcus pneumoniae were present also in other viridans streptococcal genomes. Unlike in S. pneumoniae, clustered regularly interspaced short palindromic repeat (CRISPR)–CRISPR-associated protein (Cas) gene clusters were common among viridans streptococci, and many S. oralis strains were type PI-2 (pilus islet 2) variants. S. oralis displayed a remarkable diversity of genes involved in the biosynthesis of peptidoglycan (penicillin-binding proteins and MurMN) and choline-containing teichoic acid. The small noncoding cia-dependent small RNAs (csRNAs) controlled by the response regulator CiaR might contribute to the genomic diversity, since we observed novel genomic islands between duplicated csRNAs, variably present in some isolates. All S. oralis genomes contained a β-N-acetyl-hexosaminidase gene absent in S. pneumoniae, which in contrast frequently harbors the neuraminidases NanB/C, which are absent in S. oralis. The identification of S. oralis-specific genes will help us to understand their adaptation to diverse habitats. IMPORTANCE Streptococcus pneumoniae is a rare example of a human-pathogenic bacterium among viridans streptococci, which consist of commensal symbionts, such as the close relatives Streptococcus mitis and S. oralis. We have shown that S. oralis can frequently be isolated from primates and a variety of other viridans streptococci as well. Genes and genomic islands which are known pneumococcal virulence factors are present in S. oralis and S. mitis, documenting the widespread occurrence of these compounds, which encode surface and secreted proteins. The frequent occurrence of CRISP-Cas gene clusters and a surprising variation of a set of small noncoding RNAs are factors to be considered in future research to further our understanding of mechanisms involved in the genomic diversity driven by horizontal gene transfer among viridans streptococci.


2006 ◽  
Vol 74 (12) ◽  
pp. 6642-6655 ◽  
Author(s):  
Anna Brotcke ◽  
David S. Weiss ◽  
Charles C. Kim ◽  
Patrick Chain ◽  
Stephanie Malfatti ◽  
...  

ABSTRACT The facultative intracellular bacterium Francisella tularensis causes the zoonotic disease tularemia. F. tularensis resides within host macrophages in vivo, and this ability is essential for pathogenesis. The transcription factor MglA is required for the expression of several Francisella genes that are necessary for replication in macrophages and for virulence in mice. We hypothesized that the identification of MglA-regulated genes in the Francisella genome by transcriptional profiling of wild-type and mglA mutant bacteria would lead to the discovery of new virulence factors utilized by F. tularensis. A total of 102 MglA-regulated genes were identified, the majority of which were positively regulated, including all of the Francisella pathogenicity island (FPI) genes. We mutated novel MglA-regulated genes and tested the mutants for their ability to replicate and induce cytotoxicity in macrophages and to grow in mice. Mutations in MglA-regulated genes within the FPI (pdpB and cds2) as well as outside the FPI (FTT0989, oppB, and FTT1209c) were either attenuated or hypervirulent in macrophages compared to the wild-type strain. All of these mutants exhibited decreased fitness in vivo in competition experiments with wild-type bacteria. We have identified five new Francisella virulence genes, and our results suggest that characterizations of additional MglA-regulated genes will yield further insights into the pathogenesis of this bacterium.


Sign in / Sign up

Export Citation Format

Share Document