scholarly journals Novel Luciferase Reporter System for In Vitro and Organ-Specific Monitoring of Differential Gene Expression in Listeria monocytogenes

2006 ◽  
Vol 72 (4) ◽  
pp. 2876-2884 ◽  
Author(s):  
Peter A. Bron ◽  
Ian R. Monk ◽  
Sinéad C. Corr ◽  
Colin Hill ◽  
Cormac G. M. Gahan

ABSTRACT In this paper we describe construction of a luciferase-based vector, pPL2lux, and use of this vector to study gene expression in Listeria monocytogenes. pPL2lux is a derivative of the listerial integration vector pPL2 and harbors a synthetic luxABCDE operon encoding a fatty acid reductase complex (LuxCDE) involved in synthesis of the fatty aldehyde substrate for the bioluminescence reaction catalyzed by the LuxAB luciferase. We constructed pPL2lux derivatives in which the secA and hlyA promoters were translationally fused to luxABCDE and integrated as a single copy into the chromosome of L. monocytogenes EGD-e. Growth experiments revealed that hlyA was expressed predominantly in the stationary phase in LB medium buffered at pH 7.4, whereas secA expression could be detected in the exponential growth phase. Moreover, the correlation between luciferase activity and transcription levels, as determined by reverse transcriptase PCR, was confirmed using conditions known to lead to repression and activation of hemolysin expression (addition of cellobiose and activated charcoal, respectively). Furthermore, hemolysin expression could be monitored in real time during invasion of an intact monolayer of C2Bbe1 (Caco-2-derived) cells. Finally, hemolysin expression could be detected in the livers, spleens, and kidneys of mice 3 days postinfection. These experiments clearly established the effectiveness of pPL2lux as a quantitative reporter system for real-time, noninvasive evaluation of gene expression in L. monocytogenes.

2007 ◽  
Vol 193 (3) ◽  
pp. 413-420 ◽  
Author(s):  
Pei-Jian He ◽  
Masami Hirata ◽  
Nobuhiko Yamauchi ◽  
Seiichi Hashimoto ◽  
Masa-aki Hattori

The circadian clock, regulating hormonal secretion and metabolisms in accordance with the environmental light–dark cycle, resides in almost all peripheral tissues as well as in the superchiasmatic nucleus. Clock gene expression has been found to be noncyclic during spermatogenesis and the differentiation of thymocytes. However, currently little is known about how cell differentiation could affect circadian clockwork. We performed this study using the in vitro real-time oscillation monitoring system to examine the clockwork in several types of differentiating cells originated from reproductive tissues of transgenic rats (constructed with Period gene 2 (Per2) promoter-destabilized luciferase reporter gene). After treatment with dexamethasone (DXM), persistent oscillation of Per2 expression was observed in both gonadotropin-induced and pregnant ovarian luteal cells, proliferative uterine stromal cells (USCs), and nondifferentiating testicular interstitial cells, with a cyclic period of ~24 h. In contrast to these cell types, only one cycle of oscillation was sustained in granulosa cells undergoing differentiation. Additionally, Per2 oscillation was irregular in USCs undergoing decidualization induced by medroxyprogesterone acetate plus N6, 2-O-dibutyryl adenosine 3′:5′-cyclic monophosphate. Furthermore, no oscillation of Per2 expression was evoked by DXM in Leydig cells and thymocytes. In conclusion, the present study characterized the oscillation of Per2 gene expression in several types of ovarian, uterine, and testicular cells, and it is strongly suggested that circadian clockwork is affected during cellular differentiation.


2015 ◽  
Vol 93 (10) ◽  
pp. 887-892 ◽  
Author(s):  
Rushita A. Bagchi ◽  
Viktoriya Mozolevska ◽  
Bernard Abrenica ◽  
Michael P. Czubryt

Fibrosis, which is characterized by the excessive production of matrix proteins, occurs in multiple tissues and is associated with increased morbidity and mortality. Despite its significant negative impact on patient outcomes, therapies targeted to treat fibrosis are currently lacking. Screening for inhibitors of the expression of collagen, the primary component of fibrotic lesions, represents an option for the identification of novel lead compounds for therapeutic development with potentially fewer off-target effects compared with the targeting of multifunctional cell signaling pathways. Here we report on the generation of a stable luciferase reporter system using a fibroblast cell line, which can be used for rapidly screening both activators and repressors of human collagen COL1A2 gene transcription in a high throughput setting. This in vitro screening tool was validated using known agonists (scleraxis, TGF-β, angiotensin II, CTGF) and antagonists (TNF-α, pirfenidone) of COL1A2 gene expression. The COL1A2-luc NIH-3T3 fibroblast system provides a useful and effective screen for potential lead compounds with pro- or anti-fibrotic properties.


2006 ◽  
Vol 188 (1) ◽  
pp. 179-190 ◽  
Author(s):  
Hyun-Jin Kim ◽  
Meghna Mittal ◽  
Abraham L. Sonenshein

ABSTRACT In Bacillus subtilis, the catabolite control protein C (CcpC) plays a critical role in regulating the genes encoding the enzymes of the tricarboxylic acid branch of the Krebs citric acid cycle. A gene encoding a potential CcpC homolog and two potential target genes were identified in the Listeria monocytogenes genome. In vitro gel mobility shift assays and DNase I footprinting experiments showed that L. monocytogenes CcpC (CcpCLm) interacts with the promoter regions of citBLm (the gene that is likely to encode aconitase) and lmo0847 (encoding a possible glutamine transporter) and that citrate is a specific inhibitor of this interaction. To study in vivo promoter activity, a new lacZ reporter system was developed. This system allows stable integration into the chromosome of a promoter region transcriptionally fused to a promoterless lacZ gene at a nonessential, ectopic locus. Analysis of strains carrying a citBLm -lacZ or lmo0847-lacZ fusion revealed that CcpCLm represses citBLm and lmo0847 in media containing an excess of glucose and glutamine. In addition, regulation of citBLm expression in rich medium was growth phase dependent; during exponential growth phase, expression was very low even in the absence of CcpCLm, but a higher level of citBLm expression was induced in stationary phase, suggesting the involvement of another, as yet unidentified regulatory factor.


Zuriat ◽  
2015 ◽  
Vol 14 (1) ◽  
Author(s):  
Nono Carsono ◽  
Christian Bachem

Tuberization in potato is a complex developmental process resulting in the differentiation of stolon into the storage organ, tuber. During tuberization, change in gene expression has been known to occur. To study gene expression during tuberization over the time, in vitro tuberization system provides a suitable tool, due to its synchronous in tuber formation. An early six days axillary bud growing on tuber induction medium is a crucial development since a large number of genes change in their expression patterns during this period. In order to identify, isolate and sequencing the genes which displaying differential pattern between tuberizing and non-tuberizing potato explants during six days in vitro tuberization, cDNA-AFLP fingerprint, method for the visualization of gene expression using cDNA as template which is amplified to generate an RNA-fingerprinting, was used in this experiment. Seventeen primer combinations were chosen based on their expression profile from cDNA-AFLP fingerprint. Forty five TDFs (transcript derived fragment), which displayed differential expressions, were obtained. Tuberizing explants had much more TDFs, which developmentally regulated, than those from non tuberizing explants. Seven TDFs were isolated, cloned and then sequenced. One TDF did not find similarity in the current databases. The nucleotide sequence of TDF F showed best similarity to invertase ezymes from the databases. The homology of six TDFs with known sequences is discussed in this paper.


2012 ◽  
Vol 32 (6) ◽  
pp. 531-537 ◽  
Author(s):  
Albert Braeuning ◽  
Silvia Vetter

Photinus pyralis (firefly) luciferase is widely used as a reporter system to monitor alterations in gene promoter and/or signalling pathway activities in vitro. The enzyme catalyses the formation of oxyluciferin from D-luciferin in an ATP-consuming reaction involving photon emission. The purpose of the present study was to characterize the luciferase-inhibiting potential of (E)-2-fluoro-4′-methoxystilbene, which is known as a potent inhibitor of the NF-κB (nuclear factor κB) signalling pathway that is used to modulate the NF-κB signalling pathway in vitro. Results show that (E)-2-fluoro-4′-methoxystilbene effectively inhibits firefly luciferase activity in cell lysates and living cells in a non-competitive manner with respect to the luciferase substrates D-luciferin and ATP. By contrast, the compound has no effect on Renilla and Gaussia luciferases. The mechanism of firefly luciferase inhibition by (E)-2-fluoro-4′-methoxystilbene, as well as its potency is comparable to its structure analogue resveratrol. The in vitro use of trans-stilbenes such as (E)-2-fluoro-4′-methoxystilbene or resveratrol compromises firefly luciferase reporter assays as well as ATP/luciferase-based cell viability assays.


Author(s):  
Kenneth H. Hu ◽  
John P. Eichorst ◽  
Chris S. McGinnis ◽  
David M. Patterson ◽  
Eric D. Chow ◽  
...  

ABSTRACTSpatial transcriptomics seeks to integrate single-cell transcriptomic data within the 3-dimensional space of multicellular biology. Current methods use glass substrates pre-seeded with matrices of barcodes or fluorescence hybridization of a limited number of probes. We developed an alternative approach, called ‘ZipSeq’, that uses patterned illumination and photocaged oligonucleotides to serially print barcodes (Zipcodes) onto live cells within intact tissues, in real-time and with on-the-fly selection of patterns. Using ZipSeq, we mapped gene expression in three settings: in-vitro wound healing, live lymph node sections and in a live tumor microenvironment (TME). In all cases, we discovered new gene expression patterns associated with histological structures. In the TME, this demonstrated a trajectory of myeloid and T cell differentiation, from periphery inward. A variation of ZipSeq efficiently scales to the level of single cells, providing a pathway for complete mapping of live tissues, subsequent to real-time imaging or perturbation.


Real-time PCR offers a wide area of application to analyze the role of gene activity in various biological aspects at the molecular level with higher specificity, sensitivity and the potential to troubleshoot with post-PCR processing and difficulties. With the recent advancement in the development of functional tissue graft for the regeneration of damaged/diseased tissue, it is effective to analyze the cell behaviour and differentiation over tissue construct toward specific lineage through analyzing the expression of an array of specific genes. With the ability to collect data in the exponential phase, the application of Real-Time PCR has been expanded into various fields such as tissue engineering ranging from absolute quantification of gene expression to determine neo-tissue regeneration and its maturation. In addition to its usage as a research tool, numerous advancements in molecular diagnostics have been achieved, including microbial quantification, determination of gene dose and cancer research. Also, in order to consistently quantify mRNA levels, Northern blotting and in situ hybridization (ISH) methods are less preferred due to low sensitivity, poor precision in detecting gene expression at a low level. An amplification step is thus frequently required to quantify mRNA amounts from engineered tissues of limited size. When analyzing tissue-engineered constructs or studying biomaterials–cells interactions, it is pertinent to quantify the performance of such constructs in terms of extracellular matrix formation while in vitro and in vivo examination, provide clues regarding the performance of various tissue constructs at the molecular level. In this chapter, our focus is on Basics of qPCR, an overview of technical aspects of Real-time PCR; recent Protocol used in the lab, primer designing, detection methods and troubleshooting of the experimental problems.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Chang Hyun Byon ◽  
Jay McDonald ◽  
Yabing Chen

The expression of receptor activator of nuclear factor κ B (RANKL) is up-regulated in calcified atherosclerotic lesions, whereas it is frequently undetectable in normal vessels. The underlying molecular mechanism of increased expression of RANKL in calcified vessels is not known. We have previously demonstrated that oxidative stress induces calcification of vascular smooth muscle cells (VSMC) in vitro . Therefore, we determined whether oxidative stress regulates RANKL expression in VSMC and the underlying molecular mechanism. Consistent with previous observations in vivo , we found that the expression of RANKL in VSMC isolated from mouse. However, hydrogen peroxide (H 2 O 2 ), which induces VSMC calcification, induced a 33-fold increase in the transcripts of RANKL as determined by real-time PCR. Increased expression of RANKL protein was further confirmed by ELISA. Using flow cytometry, we demonstrated that membrane-bound RANKL was increased by oxidative stress. To characterize the molecular mechanism underlying H 2 O 2 -induced RANKL expression, we employed the luciferase reporter system with a series of deletion mutants of the RANKL 5′-flanking region. The H 2 O 2 responsive region is located between −200 to −400 in the 5′-flanking region of RANKL gene. Analyses of the sequence of this region identified multiple binding sites for the key osteogenic transcription factor, Runx2, which we previously reported to be an essential regulator of VSMC calcification. Electrophoretic mobility shift analyses demonstrated increased binding of Runx2 on the RANKL promoter sequence in nuclear extracts from VSMC exposed to H 2 O 2 . To further determine the role of Runx2 in regulating RANKL expression, we generated stable Runx2 knockdown VSMC with the use of lentivirus-carrying shRNA for Runx2 gene. H 2 O 2 -induced RANKL expression was abrogated in VSMC with Runx2 knockdown. In addition, adenovirus-mediated overexpression of Runx2 in VSMC induced the expression of RANKL. In summary, we have demonstrated that H 2 O 2 induces the expression of RANKL in VSMC, which is regulated by the osteogenic transcription factor Runx2. These observations provide novel molecular insights into the regulation of RANKL and its role on the pathogenesis of calcified atherosclerotic lesions.


2013 ◽  
Vol 25 (1) ◽  
pp. 252
Author(s):  
G. K. Deb ◽  
S. R. Dey ◽  
K. S. Huque ◽  
M. Fokruzzaman ◽  
K. L. Lee ◽  
...  

Quantitative real-time PCR has enabled quality evaluation of oocyte and pre-implantation embryo through monitoring expression of several molecular markers that are involved in metabolic activity, stress response, reprogramming, and other biological events. The aldo-keto reductase family 1 member B1 (AKR1B1) transcript is potentially involved in pregnancy failure through metabolism of progesterone and synthesis of prostaglandin F2α in the bovine uterine endometrium. High expression of the transcript in blastocysts correlates inhibition of embryo implantation and/or embryo resorption. Maturation of immature oocyte in presence of 9-cis retinoic acid (9-cis RA) increases in vitro bovine embryo development rates and embryo quality. These beneficial effects of 9-cis RA are mediated through multiple mechanisms, including FSH/LH receptor expression, polyadenylation, growth factor signalling, oxidative-stress protection, or decreasing oocyte TNFα gene expression and inhibiting cumulus cell apoptosis during maturation. The present study aimed to evaluate the effect of 9-cis RA on expression pattern of AKR1B1 transcript in the oocyte matured in vitro and embryos (8-cell and Day 8 blastocyst) produced from in vitro matured oocytes in presence or absence of 9-cis RA. Bovine cumulus–oocyte complexes, isolated from ovaries collected at the abattoir, were matured in vitro in the presence of zero (control) or 5 nM 9-cis RA in the maturation medium (TCM199 + 10% fetal bovine serum + 1 µg mL–1 β-oestradiol + 10 µg mL–1 follicle stimulating hormone + 0.6 mM cystein and 0.2 mM Na-pyruvate). After maturation, the oocytes were subjected to standardized in vitro embryo production protocol or oocyte samples were collected for gene expression analysis. The expression of AKR1B1 transcript was quantified in zona-free oocytes, 8-cell embryos, and Day 8 blastocysts by real-time PCR using SYBER green. Not less than 4 biological replicates (oocytes: 50 to 60 per replicate and 8-cell embryos/day-8 blastocyst: 3 to 5 per replicate) were done for each group. The expression was normalized against a minimum of 2 out of 4 reference transcripts (18S rRNA, β-actin, glyceraldehyde-3-phosphate dehydrogenase and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta polypeptide) analysed each time with AKR1B1. The best combination of reference genes was automatically calculated by the CFX manager V1.1 program (Bio-Rad) based on M-value. The differences in gene expression levels were tested by Student’s t-test. Results indicated that 9-cis RA decreased expression of AKR1B1 transcript in the oocyte (1.0- v. 2.0-fold; P < 0.05), 8-cell-embryos (1.0- v. 10.1-fold; P < 0.03), and blastocyst (1.0- v. 2.1-fold; P < 0.03) compared with control. In conclusion, the present study indicates that 9-cis RA inhibits AKR1B1 transcript expression in oocytes and pre-implantation embryos.


Sign in / Sign up

Export Citation Format

Share Document