scholarly journals Use of Vaxfectin Adjuvant with DNA Vaccine Encoding the Measles Virus Hemagglutinin and Fusion Proteins Protects Juvenile and Infant Rhesus Macaques against Measles Virus

2008 ◽  
Vol 15 (8) ◽  
pp. 1214-1221 ◽  
Author(s):  
Chien-Hsiung Pan ◽  
Gretchen S. Jimenez ◽  
Nitya Nair ◽  
Qun Wei ◽  
Robert J. Adams ◽  
...  

ABSTRACT A measles virus vaccine for infants under 6 months of age would help control measles. DNA vaccines hold promise, but none has provided full protection from challenge. Codon-optimized plasmid DNAs encoding the measles virus hemagglutinin and fusion glycoproteins were formulated with the cationic lipid-based adjuvant Vaxfectin. In mice, antibody and gamma interferon (IFN-γ) production were increased by two- to threefold. In macaques, juveniles vaccinated at 0 and 28 days with 500 μg of DNA intradermally or with 1 mg intramuscularly developed sustained neutralizing antibody and H- and F-specific IFN-γ responses. Infant monkeys developed sustained neutralizing antibody and T cells secreting IFN-γ and interleukin-4. Twelve to 15 months after vaccination, vaccinated monkeys were protected from an intratracheal challenge: viremia was undetectable by cocultivation and rashes did not appear, while two naïve monkeys developed viremia and rashes. The use of Vaxfectin-formulated DNA is a promising approach to the development of a measles vaccine for young infants.

2010 ◽  
Vol 84 (8) ◽  
pp. 3798-3807 ◽  
Author(s):  
Chien-Hsiung Pan ◽  
Catherine E. Greer ◽  
Debra Hauer ◽  
Harold S. Legg ◽  
Eun-Young Lee ◽  
...  

ABSTRACT Measles remains a major cause of child mortality, in part due to an inability to vaccinate young infants with the current live attenuated virus vaccine (LAV). To explore new approaches to infant vaccination, chimeric Venezuelan equine encephalitis/Sindbis virus (VEE/SIN) replicon particles were used to express the hemagglutinin (H) and fusion (F) proteins of measles virus (MV). Juvenile rhesus macaques vaccinated intradermally with a single dose of VEE/SIN expressing H or H and F proteins (VEE/SIN-H or VEE/SIN-H+F, respectively) developed high titers of MV-specific neutralizing antibody and gamma-interferon (IFN-γ)-producing T cells. Infant macaques vaccinated with two doses of VEE/SIN-H+F also developed neutralizing antibody and IFN-γ-producing T cells. Control animals were vaccinated with LAV or with a formalin-inactivated measles vaccine (FIMV). Neutralizing antibody remained above the protective level for more than 1 year after vaccination with VEE/SIN-H, VEE/SIN-H+F, or LAV. When challenged with wild-type MV 12 to 17 months after vaccination, all vaccinated juvenile and infant monkeys vaccinated with VEE/SIN-H, VEE/SIN-H+F, and LAV were protected from rash and viremia, while FIMV-vaccinated monkeys were not. Antibody was boosted by challenge in all groups. T-cell responses to challenge were biphasic, with peaks at 7 to 25 days and at 90 to 110 days in all groups, except for the LAV group. Recrudescent T-cell activity coincided with the presence of MV RNA in peripheral blood mononuclear cells. We conclude that VEE/SIN expressing H or H and F induces durable immune responses that protect from measles and offers a promising new approach for measles vaccination. The viral and immunological factors associated with long-term control of MV replication require further investigation.


2014 ◽  
Vol 89 (6) ◽  
pp. 2995-3007 ◽  
Author(s):  
Yoshikazu Honda-Okubo ◽  
Dale Barnard ◽  
Chun Hao Ong ◽  
Bi-Hung Peng ◽  
Chien-Te Kent Tseng ◽  
...  

ABSTRACTAlthough the severe acute respiratory syndrome-associated coronavirus (SARS-CoV) epidemic was controlled by nonvaccine measures, coronaviruses remain a major threat to human health. The design of optimal coronavirus vaccines therefore remains a priority. Such vaccines present major challenges: coronavirus immunity often wanes rapidly, individuals needing to be protected include the elderly, and vaccines may exacerbate rather than prevent coronavirus lung immunopathology. To address these issues, we compared in a murine model a range of recombinant spike protein or inactivated whole-virus vaccine candidates alone or adjuvanted with either alum, CpG, or Advax, a new delta inulin-based polysaccharide adjuvant. While all vaccines protected against lethal infection, addition of adjuvant significantly increased serum neutralizing-antibody titers and reduced lung virus titers on day 3 postchallenge. Whereas unadjuvanted or alum-formulated vaccines were associated with significantly increased lung eosinophilic immunopathology on day 6 postchallenge, this was not seen in mice immunized with vaccines formulated with delta inulin adjuvant. Protection against eosinophilic immunopathology by vaccines containing delta inulin adjuvants correlated better with enhanced T-cell gamma interferon (IFN-γ) recall responses rather than reduced interleukin-4 (IL-4) responses, suggesting that immunopathology predominantly reflects an inadequate vaccine-induced Th1 response. This study highlights the critical importance for development of effective and safe coronavirus vaccines of selection of adjuvants based on the ability to induce durable IFN-γ responses.IMPORTANCECoronaviruses such as SARS-CoV and Middle East respiratory syndrome-associated coronavirus (MERS-CoV) cause high case fatality rates and remain major human public health threats, creating a need for effective vaccines. While coronavirus antigens that induce protective neutralizing antibodies have been identified, coronavirus vaccines present a unique problem in that immunized individuals when infected by virus can develop lung eosinophilic pathology, a problem that is further exacerbated by the formulation of SARS-CoV vaccines with alum adjuvants. This study shows that formulation of SARS-CoV spike protein or inactivated whole-virus vaccines with novel delta inulin-based polysaccharide adjuvants enhances neutralizing-antibody titers and protection against clinical disease but at the same time also protects against development of lung eosinophilic immunopathology. It also shows that immunity achieved with delta inulin adjuvants is long-lived, thereby overcoming the natural tendency for rapidly waning coronavirus immunity. Thus, delta inulin adjuvants may offer a unique ability to develop safer and more effective coronavirus vaccines.


2003 ◽  
Vol 10 (3) ◽  
pp. 411-416 ◽  
Author(s):  
Inna G. Ovsyannikova ◽  
Neelam Dhiman ◽  
Robert M. Jacobson ◽  
Robert A. Vierkant ◽  
Gregory A. Poland

ABSTRACT The protective effect of measles immunization is due to humoral and cell-mediated immune responses. Little is known about cell-mediated immunity (CMI) to measles vaccine virus, the relative contribution of CD4+ and CD8+ T cells to variability in such immune responses, and the immunologic longevity of the CMI after measles vaccination in humans. Our study characterizes cellular immune response in subjects seronegative or highly seropositive for measles vaccine immunoglobulin G-specific antibody, aged 15 to 25 years, previously immunized with two doses of measles-mumps-rubella II vaccine. We evaluated the ability of subjects to respond to measles vaccine virus by measuring measles virus-specific T-cell proliferation. We examined the frequencies of measles virus-specific memory Th1 and Th2 cells by an ELISPOT assay. Our results demonstrated that proliferation of T cells in seronegative subjects was significantly lower than that for highly seropositive subjects (P = 0.003). Gamma interferon (IFN-γ) secretion predominated over interleukin 4 (IL-4) secretion in response to measles virus in both groups. The median frequency of measles virus-reactive CD8+ T cells secreting IFN-γ was 0.09% in seronegative subjects and 0.43% in highly seropositive subjects (P = 0.04). The median frequency of CD4+ T cells secreting IL-4 in response to measles virus was 0.03% in seronegative subjects and 0.09% in highly seropositive subjects (P = 0.005). These data confirm the presence of measles virus-specific cellular immune responses post-measles vaccine immunization in humans. The detection of measles virus-induced IFN-γ and IL-4 production by ELISPOT can be used to identify measles virus-specific low-frequency memory T cells in subjects immunized with measles vaccine. These differences agree in directionality with the observed antibody response phenotype.


2002 ◽  
Vol 70 (8) ◽  
pp. 4329-4335 ◽  
Author(s):  
William O. Rogers ◽  
Walter R. Weiss ◽  
Anita Kumar ◽  
João C. Aguiar ◽  
John A. Tine ◽  
...  

ABSTRACT We tested a cytokine-enhanced, multiantigen, DNA priming and poxvirus boosting vaccine regimen for prevention of malaria in the Plasmodium knowlesi-rhesus macaque model system. Animals were primed with a mixture of DNA plasmids encoding two preerythrocytic-stage proteins and two erythrocytic-stage proteins from P. knowlesi and combinations of the cytokines granulocyte-macrophage colony-stimulating factor, interleukin-4, and tumor necrosis factor alpha and were boosted with a mixture of four recombinant, attenuated vaccinia virus strains encoding the four P. knowlesi antigens. Two weeks after boosting, the geometric mean immunofluorescence titers in the immunized groups against sporozoites and infected erythrocytes ranged from 160 to 8,096 and from 1,810 to 5,120, respectively. The geometric mean anti-P. knowlesi circumsporozoite protein (PkCSP) titers ranged from 1,761 to 24,242. Peripheral blood mononuclear cells (PBMC) from the immunized monkeys produced gamma interferon (IFN-γ) in response to incubation with pooled peptides from the PkCSP at frequencies of 10 to 571 spot-forming cells/106 PBMC. Following challenge with 100 infectious P. knowlesi sporozoites, 2 of 11 immunized monkeys were sterilely protected, and 7 of the 9 infected monkeys resolved their parasitemias spontaneously. In contrast, all four controls became infected and required treatment for overwhelming parasitemia. Early protection was strongly associated with IFN-γ responses against a pool of peptides from the preerythrocytic-stage antigen, PkCSP. These findings demonstrate that a multistage, multiantigen, DNA priming and poxvirus boosting vaccine regimen can protect nonhuman primates from an otherwise lethal malaria sporozoite challenge.


2021 ◽  
Vol 6 (60) ◽  
pp. eabj3684
Author(s):  
Carolina Garrido ◽  
Alan D. Curtis ◽  
Maria Dennis ◽  
Sachi H. Pathak ◽  
Hongmei Gao ◽  
...  

The inclusion of infants in the SARS-CoV-2 vaccine roll-out is important to prevent severe complications of pediatric SARS-CoV-2 infections and to limit transmission and could possibly be implemented via the global pediatric vaccine schedule. However, age-dependent differences in immune function require careful evaluation of novel vaccines in the pediatric population. Toward this goal, we assessed the safety and immunogenicity of two SARS-CoV-2 vaccines. Two groups of 8 infant rhesus macaques (RMs) were immunized intramuscularly at weeks 0 and 4 with stabilized prefusion SARS-CoV-2 S-2P spike (S) protein encoded by mRNA encapsulated in lipid nanoparticles (mRNA-LNP) or the purified S protein mixed with 3M-052, a synthetic TLR7/8 agonist in a squalene emulsion (Protein+3M-052-SE). Neither vaccine induced adverse effects. Both vaccines elicited high magnitude IgG binding to RBD, N terminus domain, S1, and S2, ACE2 blocking activity, and high neutralizing antibody titers, all peaking at week 6. S-specific memory B cells were detected by week 4 and S-specific T cell responses were dominated by the production of IL-17, IFN-γ, or TNF-α. Antibody and cellular responses were stable through week 22. The immune responses for the mRNA-LNP vaccine were of a similar magnitude to those elicited by the Moderna mRNA-1273 vaccine in adults. The S-2P mRNA-LNP and Protein-3M-052-SE vaccines were well-tolerated and highly immunogenic in infant RMs, providing proof-of concept for a pediatric SARS-CoV-2 vaccine with the potential for durable immunity that might decrease the transmission of SARS-CoV-2 and mitigate the ongoing health and socioeconomic impacts of COVID-19.


2004 ◽  
Vol 78 (1) ◽  
pp. 42-51 ◽  
Author(s):  
Inna G. Ovsyannikova ◽  
Kenneth L. Johnson ◽  
David C. Muddiman ◽  
Robert A. Vierkant ◽  
Gregory A. Poland

ABSTRACT Previously, we identified a naturally processed and presented measles virus (MV) 19-amino-acid peptide, ASDVETAEGGEIHELLRLQ (MV-P), derived from the phosphoprotein and eluted from the human leukocyte antigen (HLA) class II molecule by using mass spectrometry. We report here the identification of a 14-amino-acid peptide, SAGKVSSTLASELG, derived from the MV nucleoprotein (MV-N) bound to HLA-DRB1*0301. Peripheral blood mononuclear cells (PBMC) from 281 previously vaccinated measles-mumps-rubella II (MMR-II) subjects (HLA discordant) were studied for peptide recognition by T cells. Significant gamma interferon (IFN-γ) responses to MV-P and MV-N peptides were observed in 55.9 and 15.3% of subjects, respectively. MV-P- and MV-N-specific interleukin-4 (IL-4) responses were detected in 19.2 and 23.1%, respectively, of PBMC samples. Peptide-specific cytokine responses and HLA-DRB1 allele associations revealed that, for the MV-P peptide, the allele with the strongest association with both IFN-γ (P = 0.02) and IL-4 (P = 0.03) secretion was DRB1*0301. For MV-N, the allele with the strongest association with IFN-γ secretion was DRB1*1501 (P = 0.04), and the alleles with the strongest associations with IL-4 secretion were DRB1*1103 and DRB1*1303 (P = 0.01). These results indicate that HLA class II MV proteins can be processed, presented, and identified, and the ability to generate cell-mediated immune responses can be demonstrated. This information is promising for new vaccine design strategies with peptide-based vaccines.


1997 ◽  
Vol 176 (6) ◽  
pp. 1445-1453 ◽  
Author(s):  
Yong‐de Zhu ◽  
Glenn Fennelly ◽  
Christopher Miller ◽  
Ross Tarara ◽  
Inger Saxe ◽  
...  

mBio ◽  
2014 ◽  
Vol 5 (2) ◽  
Author(s):  
Wen-Hsuan W. Lin ◽  
Chien-Hsiung Pan ◽  
Robert J. Adams ◽  
Beth L. Laube ◽  
Diane E. Griffin

ABSTRACTInfection with wild-type measles virus (MeV) induces lifelong protection from reinfection, and parenteral delivery of the live attenuated measles vaccine (LAV) also provides protection from measles. The level of neutralizing antibody is a good indicator of protection, but the independent roles of MeV-specific antibody and T cells have not been identified. In this study, macaques immunized with LAV through a nebulizer and a mouthpiece developed MeV-specific T-cell responses but not neutralizing antibodies. Upon challenge with wild-type MeV, these animals developed rashes and viremias similar to those in naive animals but cleared viral RNA from blood 25 to 40 days faster. The nebulizer-immunized animals also had more robust MeV-specific CD4+and CD8+T-cell responses than the naive animals after challenge, characterized by a higher number and better durability of gamma interferon (IFN-γ)-producing cells. Induction of MeV-specific circulating CD4+and CD8+T cells capable of producing multiple cytokines correlated with clearance of viral RNA in the nebulizer-immunized macaques. These studies demonstrated that MeV-specific T-cell immunity alone did not prevent measles, but T-cell priming enhanced the magnitude, durability, and polyfunctionality of MeV-specific T cells after challenge infection and correlated with more rapid clearance of MeV RNA.IMPORTANCEThe components of vaccine-induced immunity necessary for protection from infection and disease have not been clearly identified for most vaccines. Vaccine development usually focuses on induction of antibody, but T-cell-based vaccines are also under development. The live attenuated measles vaccine (LAV) given subcutaneously induces both T cells and neutralizing antibody and provides solid protection from infection. LAV delivered to the upper respiratory tract through a nebulizer and mouthpiece induced a T-cell response but no neutralizing antibody. These T-cell-primed macaques demonstrated no protection from rash or viremia when challenged with wild-type MeV, but viral RNA was cleared more rapidly than in unimmunized animals. Thus, T-cell immunity did not protect from infection or acute disease but facilitated virus clearance during recovery. These studies demonstrate the importance and independent roles of T cells and antibody in protection and recovery from measles.


2012 ◽  
Vol 20 (2) ◽  
pp. 205-210 ◽  
Author(s):  
Fernando P. Polack ◽  
Shari L. Lydy ◽  
Sok-Hyong Lee ◽  
Paul A. Rota ◽  
William J. Bellini ◽  
...  

ABSTRACTA vaccine that would protect young infants against measles could facilitate elimination efforts and decrease morbidity and mortality in developing countries. However, immaturity of the immune system is an important obstacle to the development of such a vaccine. In this study, DNA vaccines expressing the measles virus (MeV) hemagglutinin (H) protein or H and fusion (F) proteins, previously shown to protect juvenile macaques, were used to immunize groups of 4 newborn rhesus macaques. Monkeys were inoculated intradermally with 200 μg of each DNA at birth and at 10 months of age. As controls, 2 newborn macaques were similarly vaccinated with DNA encoding the influenza virus H5, and 4 received one dose of the current live attenuated MeV vaccine (LAV) intramuscularly. All monkeys were monitored for development of MeV-specific neutralizing and binding IgG antibody and cytotoxic T lymphocyte (CTL) responses. These responses were poor compared to the responses induced by LAV. At 18 months of age, all monkeys were challenged intratracheally with a wild-type strain of MeV. Monkeys that received the DNA vaccine encoding H and F, but not H alone, were primed for an MeV-specific CD8+CTL response but not for production of antibody. LAV-vaccinated monkeys were protected from rash and viremia, while DNA-vaccinated monkeys developed rashes, similar to control monkeys, but had 10-fold lower levels of viremia. We conclude that vaccination of infant macaques with DNA encoding MeV H and F provided only partial protection from MeV infection.


Sign in / Sign up

Export Citation Format

Share Document