scholarly journals BEM46 Shows Eisosomal Localization and Association with Tryptophan-Derived Auxin Pathway in Neurospora crassa

2014 ◽  
Vol 13 (8) ◽  
pp. 1051-1063 ◽  
Author(s):  
K. Kollath-Leiß ◽  
C. Bönniger ◽  
P. Sardar ◽  
F. Kempken

ABSTRACTBEM46 proteins are evolutionarily conserved, but their functions remain elusive. We reported previously that the BEM46 protein inNeurospora crassais targeted to the endoplasmic reticulum (ER) and is essential for ascospore germination. In the present study, we established abem46knockout strain ofN. crassa. This Δbem46mutant exhibited a level of ascospore germination lower than that of the wild type but much higher than those of the previously characterizedbem46-overexpressing and RNA interference (RNAi) lines. Reinvestigation of the RNAi transformants revealed two types of alternatively splicedbem46mRNA; expression of either type led to a loss of ascospore germination. Our results indicated that the phenotype was not due tobem46mRNA downregulation or loss but was caused by the alternatively spliced mRNAs and the peptides they encoded. Using theN. crassaortholog of the eisosomal protein PILA fromAspergillus nidulans, we further demonstrated the colocalization of BEM46 with eisosomes. Employing the yeast two-hybrid system, we identified a single interaction partner: anthranilate synthase component II (encoded bytrp-1). This interaction was confirmedin vivoby a split-YFP (yellow fluorescent protein) approach. The Δtrp-1mutant showed reduced ascospore germination and increased indole production, and we used bioinformatic tools to identify a putative auxin biosynthetic pathway. The genes involved exhibited various levels of transcriptional regulation in the differentbem46transformant and mutant strains. We also investigated the indole production of the strains in different developmental stages. Our findings suggested that the regulation of indole biosynthesis genes was influenced bybem46overexpression. Furthermore, we uncovered evidence of colocalization of BEM46 with the neutral amino acid transporter MTR.

2014 ◽  
Vol 13 (9) ◽  
pp. 1232-1240 ◽  
Author(s):  
Zhenqiu Huang ◽  
Sabine Kaltenbrunner ◽  
Eva Šimková ◽  
David Stanĕk ◽  
Julius Lukeš ◽  
...  

ABSTRACT There are a variety of complex metabolic processes ongoing simultaneously in the single, large mitochondrion of Trypanosoma brucei . Understanding the organellar environment and dynamics of mitochondrial proteins requires quantitative measurement in vivo . In this study, we have validated a method for immobilizing both procyclic stage (PS) and bloodstream stage (BS) T. brucei brucei with a high level of cell viability over several hours and verified its suitability for undertaking fluorescence recovery after photobleaching (FRAP), with mitochondrion-targeted yellow fluorescent protein (YFP). Next, we used this method for comparative analysis of the translational diffusion of mitochondrial RNA-binding protein 1 (MRP1) in the BS and in T. b. evansi . The latter flagellate is like petite mutant Saccharomyces cerevisiae because it lacks organelle-encoded nucleic acids. FRAP measurement of YFP-tagged MRP1 in both cell lines illuminated from a new perspective how the absence or presence of RNA affects proteins involved in mitochondrial RNA metabolism. This work represents the first attempt to examine this process in live trypanosomes.


2015 ◽  
Vol 81 (24) ◽  
pp. 8277-8293 ◽  
Author(s):  
Tony Tumlirsch ◽  
Anna Sznajder ◽  
Dieter Jendrossek

ABSTRACTA protein (PhaX) that interacted with poly(3-hydroxybutyrate) (PHB) depolymerase PhaZa1 and with PHB granule-associated phasin protein PhaP2 was identified by two-hybrid analysis. Deletion ofphaXresulted in an increase in the level of polyphosphate (polyP) granule formation and in impairment of PHB utilization in nutrient broth-gluconate cultures. A procedure for enrichment of polyP granules from cell extracts was developed. Twenty-seven proteins that were absent in other cell fractions were identified in the polyP granule fraction by proteome analysis. One protein (A2437) harbored motifs characteristic of type 1 polyphosphate kinases (PPK1s), and two proteins (A1212, A1271) had PPK2 motifs.In vivocolocalization with polyP granules was confirmed by expression of C- and N-terminal fusions of enhanced yellow fluorescent protein (eYFP) with the three polyphosphate kinases (PPKs). Screening of the genome DNA sequence for additional proteins with PPK motifs revealed one protein with PPK1 motifs and three proteins with PPK2 motifs. Construction and subsequent expression of C- and N-terminal fusions of the four new PPK candidates with eYFP showed that only A1979 (PPK2 motif) colocalized with polyP granules. The other three proteins formed fluorescent foci near the cell pole (apart from polyP) (A0997, B1019) or were soluble (A0226). Expression of theRalstonia eutropha ppk(ppkReu) genes in anEscherichia coliΔppkbackground and construction of a set of single and multiple chromosomal deletions revealed that both A2437 (PPK1a) and A1212 (PPK2c) contributed to polyP granule formation. Mutants with deletion of both genes were unable to produce polyP granules. The formation and utilization of PHB and polyP granules were investigated in different chromosomal backgrounds.


2014 ◽  
Vol 81 (5) ◽  
pp. 1847-1858 ◽  
Author(s):  
Anna Sznajder ◽  
Daniel Pfeiffer ◽  
Dieter Jendrossek

ABSTRACTIdentification of proteins that were present in a polyhydroxybutyrate (PHB) granule fraction isolated fromRalstonia eutrophabut absent in the soluble, membrane, and membrane-associated fractions revealed the presence of only 12 polypeptides with PHB-specific locations plus 4 previously known PHB-associated proteins with multiple locations. None of the previously postulated PHB depolymerase isoenzymes (PhaZa2 to PhaZa5, PhaZd1, and PhaZd2) and none of the two known 3-hydroxybutyrate oligomer hydrolases (PhaZb and PhaZc) were significantly present in isolated PHB granules. Four polypeptides were found that had not yet been identified in PHB granules. Three of the novel proteins are putative α/β-hydrolases, and two of those (A0671 and B1632) have a PHB synthase/depolymerase signature. The third novel protein (A0225) is a patatin-like phospholipase, a type of enzyme that has not been described for PHB granules of any PHB-accumulating species. No function has been ascribed to the fourth protein (A2001), but its encoding gene forms an operon withphaB2(acetoacetyl-coenzyme A [CoA] reductase) andphaC2(PHB synthase), and this is in line with a putative function in PHB metabolism. The localization of the four new proteins at the PHB granule surface was confirmedin vivoby fluorescence microscopy of constructed fusion proteins with enhanced yellow fluorescent protein (eYFP). Deletion of A0671 and B1632 had a minor but detectable effect on the PHB mobilization ability in the stationary growth phase of nutrient broth (NB)-gluconate cells, confirming the functional involvement of both proteins in PHB metabolism.


2015 ◽  
Vol 81 (6) ◽  
pp. 2233-2243 ◽  
Author(s):  
Shicheng Chen ◽  
Michael Bagdasarian ◽  
Edward D. Walker

ABSTRACTFlavobacteria (members of the familyFlavobacteriaceae) dominate the bacterial community in theAnophelesmosquito midgut. One such commensal,Elizabethkingia anophelis, is closely associated withAnophelesmosquitoes through transstadial persistence (i.e., from one life stage to the next); these and other properties favor its development for paratransgenic applications in control of malaria parasite transmission. However, the physiological requirements ofE. anophelishave not been investigated, nor has its capacity to perpetuate despite digestion pressure in the gut been quantified. To this end, we first developed techniques for genetic manipulation ofE. anophelis, including selectable markers, reporter systems (green fluorescent protein [GFP] and NanoLuc), and transposons that function inE. anophelis. A flavobacterial expression system based on the promoter PompAwas integrated into theE. anophelischromosome and showed strong promoter activity to drive GFP and NanoLuc reporter production. Introduced, GFP-taggedE. anophelisassociated with mosquitoes at successive developmental stages and propagated inAnopheles gambiaeandAnopheles stephensibut not inAedes triseriatusmosquitoes. Feeding NanoLuc-tagged cells toA. gambiaeandA. stephensiin the larval stage led to infection rates of 71% and 82%, respectively. In contrast, a very low infection rate (3%) was detected inAedes triseriatusmosquitoes under the same conditions. Of the initialE. anopheliscells provided to larvae, 23%, 71%, and 85% were digested inA. stephensi,A. gambiae, andAedes triseriatus, respectively, demonstrating thatE. anophelisadapted to various mosquito midgut environments differently. Bacterial cell growth increased up to 3-fold when arginine was supplemented in the defined medium. Furthermore, the number of NanoLuc-tagged cells inA. stephensisignificantly increased when arginine was added to a sugar diet, showing it to be an important amino acid forE. anophelis. Animal erythrocytes promotedE. anophelisgrowthin vivoandin vitro, indicating that this bacterium could obtain nutrients by participating in erythrocyte lysis in the mosquito midgut.


2014 ◽  
Vol 80 (16) ◽  
pp. 4936-4946 ◽  
Author(s):  
Anna Sznajder ◽  
Dieter Jendrossek

ABSTRACTThe putative physiological functions of two related intracellular poly(3-hydroxybutyrate) (PHB) depolymerases, PhaZd1 and PhaZd2, ofRalstonia eutrophaH16 were investigated. Purified PhaZd1 and PhaZd2 were active with native PHB granulesin vitro. Partial removal of the proteinaceous surface layer of native PHB granules by trypsin treatment or the use of PHB granules isolated from ΔphaP1or ΔphaP1-phaP5mutant strains resulted in increased specific PHB depolymerase activity, especially for PhaZd2. Constitutive expression of PhaZd1 or PhaZd2 reduced or even prevented the accumulation of PHB under PHB-permissive conditionsin vivo. Expression of translational fusions of enhanced yellow fluorescent protein (EYFP) with PhaZd1 and PhaZd2 in which the active-site serines (S190 and Ser193) were replaced with alanine resulted in the colocalization of only PhaZd1 fusions with PHB granules. C-terminal fusions of inactive PhaZd2(S193A) with EYFP revealed the presence of spindle-like structures, and no colocalization with PHB granules was observed. Chromosomal deletion ofphaZd1,phaZd2, or both depolymerase genes had no significant effect on PHB accumulation and mobilization during growth in nutrient broth (NB) or NB-gluconate medium. Moreover, neither proteome analysis of purified native PHB granules norlacZfusion studies gave any indication that PhaZd1 or PhaZd2 was detectably present in the PHB granule fraction or expressed at all during growth on NB-gluconate medium. In conclusion, PhaZd1 and PhaZd2 are two PHB depolymerases with a high capacity to degrade PHB when artificially expressed but are apparently not involved in PHB mobilization in the wild type. The truein vivofunctions of PhaZd1 and PhaZd2 remain obscure.


mBio ◽  
2014 ◽  
Vol 5 (4) ◽  
Author(s):  
Nicolas J. Delalez ◽  
Richard M. Berry ◽  
Judith P. Armitage

ABSTRACTSome proteins in biological complexes exchange with pools of free proteins while the complex is functioning. Evidence is emerging that protein exchange can be part of an adaptive mechanism. The bacterial flagellar motor is one of the most complex biological machines and is an ideal model system to study protein dynamics in large multimeric complexes. Recent studies showed that the copy number of FliM in the switch complex and the fraction of FliM that exchanges vary with the direction of flagellar rotation. Here, we investigated the stoichiometry and turnover of another switch complex component, FliN, labeled with the fluorescent protein CyPet, inEscherichia coli. Our results confirm that,in vivo, FliM and FliN form a complex with stoichiometry of 1:4 and function as a unit. We estimated that wild-type motors contained 120 ± 26 FliN molecules. Motors that rotated only clockwise (CW) or counterclockwise (CCW) contained 114 ± 17 and 144 ± 26 FliN molecules, respectively. The ratio of CCW-to-CW FliN copy numbers was 1.26, very close to that of 1.29 reported previously for FliM. We also measured the exchange of FliN molecules, which had a time scale and dependence upon rotation direction similar to those of FliM, consistent with an exchange of FliM-FliN as a unit. Our work confirms the highly dynamic nature of multimeric protein complexes and indicates that, under physiological conditions, these machines might not be the stable, complete structures suggested by averaged fixed methodologies but, rather, incomplete rings that can respond and adapt to changing environments.IMPORTANCEThe flagellum is one of the most complex structures in a bacterial cell, with the core motor proteins conserved across species. Evidence is now emerging that turnover of some of these motor proteins depends on motor activity, suggesting that turnover is important for function. The switch complex transmits the chemosensory signal to the rotor, and we show, by using single-cell measurement, that both the copy number and the fraction of exchanging molecules vary with the rotational bias of the rotor. When the motor is locked in counterclockwise rotation, the copy number is similar to that determined by averaged, fixed methodologies, but when locked in a clockwise direction, the number is much lower, suggesting that that the switch complex ring is incomplete. Our results suggest that motor remodeling is an important component in tuning responses and adaptation at the motor.


2010 ◽  
Vol 298 (4) ◽  
pp. E807-E814 ◽  
Author(s):  
Lara R. Nyman ◽  
Eric Ford ◽  
Alvin C. Powers ◽  
David W. Piston

Pancreatic islets are highly vascularized and arranged so that regions containing β-cells are distinct from those containing other cell types. Although islet blood flow has been studied extensively, little is known about the dynamics of islet blood flow during hypoglycemia or hyperglycemia. To investigate changes in islet blood flow as a function of blood glucose level, we clamped blood glucose sequentially at hyperglycemic (∼300 mg/dl or 16.8 mM) and hypoglycemic (∼50 mg/dl or 2.8 mM) levels while simultaneously imaging intraislet blood flow in mouse models that express green fluorescent protein in the β-cells or yellow fluorescent protein in the α-cells. Using line scanning confocal microscopy, in vivo blood flow was assayed after intravenous injection of fluorescent dextran or sulforhodamine-labeled red blood cells. Regardless of the sequence of hypoglycemia and hyperglycemia, islet blood flow is faster during hyperglycemia, and apparent blood volume is greater during hyperglycemia than during hypoglycemia. However, there is no change in the order of perfusion of different islet endocrine cell types in hypoglycemia compared with hyperglycemia, with the islet core of β-cells usually perfused first. In contrast to the results in islets, there was no significant difference in flow rate in the exocrine pancreas during hyperglycemia compared with hypoglycemia. These results indicate that glucose differentially regulates blood flow in the pancreatic islet vasculature independently of blood flow in the rest of the pancreas.


2008 ◽  
Vol 294 (2) ◽  
pp. H699-H707 ◽  
Author(s):  
Ellen Steward Pentz ◽  
Maria Luisa S. Sequeira Lopez ◽  
Magali Cordaillat ◽  
R. Ariel Gomez

The renin-angiotensin system (RAS) regulates blood pressure and fluid-electrolyte homeostasis. A key step in the RAS cascade is the regulation of renin synthesis and release by the kidney. We and others have shown that a major mechanism to control renin availability is the regulation of the number of cells capable of making renin. The kidney possesses a pool of cells, mainly in its vasculature but also in the glomeruli, capable of switching from smooth muscle to endocrine renin-producing cells when homeostasis is threatened. The molecular mechanisms governing the ability of these cells to turn the renin phenotype on and off have been very difficult to study in vivo. We, therefore, developed an in vitro model in which cells of the renin lineage are labeled with cyan fluorescent protein and cells actively making renin mRNA are labeled with yellow fluorescent protein. The model allowed us to determine that it is possible to culture cells of the renin lineage for numerous passages and that the memory to express the renin gene is maintained in culture and can be reenacted by cAMP and chromatin remodeling (histone H4 acetylation) at the cAMP-responsive element in the renin gene.


2021 ◽  
Author(s):  
Giovanni Gallo ◽  
Ioannis Mougiakos ◽  
Mauricio Bianco ◽  
Miriam Carbonaro ◽  
Andrea Carpentieri ◽  
...  

Arsenic detoxification systems can be found in a wide range of organisms, from bacteria to man. In a previous study, we discovered an arsenic-responsive transcriptional regulator in the thermophilic bacterium Thermus thermophilus HB27 (TtSmtB). Here, we characterize the arsenic resistance system of T. thermophilus in more detail. We employed TtSmtB-based pull-down assays with protein extracts from cultures treated with arsenate and arsenite to obtain an S-adenosylmethionine (SAM)-dependent arsenite methyltransferase (TtArsM). In vivo and in vitro analyses were performed to shed light on this new component of the arsenic resistance network and its peculiar catalytic mechanism. Heterologous expression of TtarsM in Escherichia coli resulted in arsenite detoxification at mesophilic temperatures. Although TtArsM does not contain a canonical arsenite binding site, the purified protein does catalyse SAM-dependent arsenite methylation. In addition, in vitro analyses confirmed the unique interaction between TtArsM and TtSmtB. Next, a highly efficient ThermoCas9-based genome-editing tool was developed to delete the TtArsM-encoding gene on the T. thermophilus genome, and to confirm its involvement in the arsenite detoxification system. Finally, the TtarsX efflux pump gene in the T. thermophilus ΔTtarsM genome was substituted by a gene, encoding a stabilised yellow fluorescent protein (sYFP), to create a sensitive genome-based bioreporter system for the detection of arsenic ions.


mSphere ◽  
2017 ◽  
Vol 2 (4) ◽  
Author(s):  
Hélène Tournu ◽  
Arturo Luna-Tapia ◽  
Brian M. Peters ◽  
Glen E. Palmer

ABSTRACT Candida albicans is an opportunistic fungal pathogen that colonizes the reproductive and gastrointestinal tracts of its human host. It can also invade the bloodstream and deeper organs of immunosuppressed individuals, and thus it encounters enormous variations in external pH in vivo. Accordingly, survival within such diverse niches necessitates robust adaptive responses to regulate intracellular pH. However, the impact of antifungal drugs upon these adaptive responses, and on intracellular pH in general, is not well characterized. Furthermore, the tools and methods currently available to directly monitor intracellular pH in C. albicans, as well as other fungal pathogens, have significant limitations. To address these issues, we developed a new and improved set of pH sensors based on the pH-responsive fluorescent protein pHluorin. This includes a cytoplasmic sensor, a probe that localizes inside the fungal vacuole (an acidified compartment that plays a central role in intracellular pH homeostasis), and a cell surface probe that can detect changes in extracellular pH. These tools can be used to monitor pH within single C. albicans cells or in cell populations in real time through convenient and high-throughput assays. Environmental or chemically induced stresses often trigger physiological responses that regulate intracellular pH. As such, the capacity to detect pH changes in real time and within live cells is of fundamental importance to essentially all aspects of biology. In this respect, pHluorin, a pH-sensitive variant of green fluorescent protein, has provided an invaluable tool to detect such responses. Here, we report the adaptation of pHluorin2 (PHL2), a substantially brighter variant of pHluorin, for use with the human fungal pathogen Candida albicans. As well as a cytoplasmic PHL2 indicator, we describe a version that specifically localizes within the fungal vacuole, an acidified subcellular compartment with important functions in nutrient storage and pH homeostasis. In addition, by means of a glycophosphatidylinositol-anchored PHL2-fusion protein, we generated a cell surface pH sensor. We demonstrated the utility of these tools in several applications, including accurate intracellular and extracellular pH measurements in individual cells via flow cytometry and in cell populations via a convenient plate reader-based protocol. The PHL2 tools can also be used for endpoint as well as time course experiments and to conduct chemical screens to identify drugs that alter normal pH homeostasis. These tools enable observation of the highly dynamic intracellular pH shifts that occur throughout the fungal growth cycle, as well as in response to various chemical treatments. IMPORTANCE Candida albicans is an opportunistic fungal pathogen that colonizes the reproductive and gastrointestinal tracts of its human host. It can also invade the bloodstream and deeper organs of immunosuppressed individuals, and thus it encounters enormous variations in external pH in vivo. Accordingly, survival within such diverse niches necessitates robust adaptive responses to regulate intracellular pH. However, the impact of antifungal drugs upon these adaptive responses, and on intracellular pH in general, is not well characterized. Furthermore, the tools and methods currently available to directly monitor intracellular pH in C. albicans, as well as other fungal pathogens, have significant limitations. To address these issues, we developed a new and improved set of pH sensors based on the pH-responsive fluorescent protein pHluorin. This includes a cytoplasmic sensor, a probe that localizes inside the fungal vacuole (an acidified compartment that plays a central role in intracellular pH homeostasis), and a cell surface probe that can detect changes in extracellular pH. These tools can be used to monitor pH within single C. albicans cells or in cell populations in real time through convenient and high-throughput assays.


Sign in / Sign up

Export Citation Format

Share Document